

Platform Developer’s Kit

PixelStreams Manual

PixelStreams Manual

www.celoxica.com

Celoxica, the Celoxica logo and Handel-C are trademarks of Celoxica Limited.

All other products or services mentioned herein may be trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described in,
this document may be adapted or reproduced in any material form except with the prior
written permission of the copyright holder.

The product described in this document is subject to continuous development and
improvement. All particulars of the product and its use contained in this document are given
by Celoxica Limited in good faith. However, all warranties implied or express, including but
not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. Celoxica
Limited shall not be liable for any loss or damage arising from the use of any information in
this document, or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general
guidance only.

Copyright © 2005 Celoxica Limited. All rights reserved.

Authors: RG

Document number: 1

Customer Support at http://www.celoxica.com/support/

Celoxica in Europe Celoxica in Japan Celoxica in the Americas

T: +44 (0) 1235 863 656 T: +81 (0) 45 331 0218 T: +1 800 570 7004

E: sales.emea@celoxica.com E:
sales.japan@celoxica.com

E:
sales.america@celoxica.com

PixelStreams Manual

www.celoxica.com Page 1

Contents

1 INTRODUCTION ... 7
1.1 THEORY OF OPERATION.. 7
1.2 QUICK START... 8

2 STREAMS ... 13
2.1 PIXEL TYPES.. 13

2.1.1 Ranges of pixel types .. 14
2.1.2 Conversions between pixel types... 15

2.2 COORDINATE TYPES .. 15
2.3 SYNC TYPES .. 16
2.4 STREAM COMPATIBILITY .. 17
2.5 DECLARING STREAMS .. 18
2.6 IMAGE FORMATION ... 20
2.7 ENSURING PIXELS ARE NOT LOST.. 21

3 WRITING CUSTOM FILTERS... 23

4 PLATFORM SPECIFICS.. 25
4.1 RC200 / RC200E / RC203 / RC203E 25
4.2 RC300 / RC300E .. 26
4.3 SIMULATION ... 26

5 DESCRIPTION OF EXAMPLES.. 28

6 PIXELSTREAMS GUI... 32
6.1 ADDING A FILTER ... 33
6.2 CREATING A STREAM ... 34
6.3 GENERATING AND COMPILING THE DESIGN 35
6.4 FILE MENU .. 36
6.5 PROJECT PROPERTIES .. 36
6.6 OPTIONS .. 38
6.7 GUI EXAMPLES .. 39

7 STANDARD FILTERS .. 40
7.1 ARITHMETIC (1-OP) ... 41

7.1.1 PxsAbs: absolute value .. 42
7.1.2 PxsInvert: inversion .. 43
7.1.3 PxsNegate: negation ... 44
7.1.4 PxsNot: bitwise not ... 45

7.2 ARITHMETIC (2-OP) ... 46

PixelStreams Manual

www.celoxica.com Page 2

7.2.1 PxsAdd/PxsAddSat: image addition.. 47
7.2.2 PxsAnd: bitwise and .. 48
7.2.3 PxsAverage: image average ... 49
7.2.4 PxsBlend: image blending .. 50
7.2.5 PxsMax: image maximum .. 51
7.2.6 PxsMin: image minimum.. 52
7.2.7 PxsMul: image multiplication .. 53
7.2.8 PxsOr: bitwise or .. 54
7.2.9 PxsSub/PxsSubSat: image subtraction ... 55
7.2.10 PxsXor: bitwise xor.. 56

7.3 ARITHMETIC (SCALAR).. 57
7.3.1 PxsSaturate: saturate levels ... 58
7.3.2 PxsScalar*: scalar arithmetic .. 59

7.4 CLIPPING ... 61
7.4.1 PxsClipBorder: clip to remove a border .. 62
7.4.2 PxsClipCircle: clip to a circle ... 63
7.4.3 PxsClipRectangle: clip to a rectangle.. 64
7.4.4 PxsClipStream: clip to a binary stream... 65
7.4.5 PxsUnclip: reset active region ... 66
7.4.6 PxsUnclipAndBlank: blank out clipped regions ... 67

7.5 CONVERTERS ... 68
7.5.1 PxsBitSlice: bit slice extraction.. 69
7.5.2 PxsCombineRGB: create an RGB stream... 70
7.5.3 PxsConvert: color-space conversion... 71
7.5.4 PxsExtractRGB: split an RGB stream.. 72
7.5.5 PxsOrderedDither/PxsOrderedDither3: ordered dithering 73
7.5.6 PxsThreshold: binary threshold ... 74

7.6 CONVOLUTIONS ... 75
7.6.1 PxsBlur3x3: blurring.. 76
7.6.2 PxsBlur5x5: heavy blurring .. 77
7.6.3 PxsConvolution3x3, PxsConvolutionDual3x3: arbitrary 3x3 convolutions 78
7.6.4 PxsConvolution5x5: arbitrary 5x5 convolution ... 79
7.6.5 PxsLaplacian3x3: high-pass filter .. 80
7.6.6 PxsMedianFilter: median filtering... 81
7.6.7 PxsSharpen3x3: sharpening ... 82
7.6.8 PxsSobel: edge detection ... 83

7.7 COORDINATE TRANSFORMS ... 85
7.7.1 PxsAffineTransform: affine transformation .. 86
7.7.2 PxsDisplace: coordinate displacement .. 87
7.7.3 PxsDynamicRotate: coordinate rotation .. 88
7.7.4 PxsRegenerateCoord: recreate synchronous coordinates............................. 89
7.7.5 PxsScale: coordinate scaling... 90
7.7.6 PxsScalePower2: simple coordinate scaling ... 91
7.7.7 PxsTranslate: coordinate shifting... 92

7.8 FLOW CONTROL.. 93
7.8.1 PxsDelay: delaying streams.. 94
7.8.2 PxsFIFO: first-in-first-out buffering of streams .. 95
7.8.3 PxsJoin: join two intermittent streams ... 96

PixelStreams Manual

www.celoxica.com Page 3

7.8.4 PxsLineBuffer/PxsDualLineBuffer: line buffering... 97
7.8.5 PxsMux*: multiplexing streams... 98
7.8.6 PxsMux2Stream: multiplexing controlled by streams 99
7.8.7 PxsNonReturnValve: inhibiting flow control ... 100
7.8.8 PxsRateLimiter: limit stream data rate ... 101
7.8.9 PxsSend/PxsReceive: passing streams over channels 102
7.8.10 PxsSplit*: splitting streams .. 103
7.8.11 PxsSynchronise: synchronize skewed streams 104
7.8.12 PxsValve: controlling streams ... 105

7.9 FRAMEBUFFERS ...106
7.9.1 PxsPalPL1RAMReader: read a static image.. 107
7.9.2 PxsPalPL1RAMFrameBufferDB: double-buffered framebuffer 108
7.9.3 PxsPalPL1RAMFrameBuffer: single-buffered framebuffer 110

7.10 IMAGE ANALYSIS ...112
7.10.1 PxsAnalyse: analyse pixel values ... 113
7.10.2 PxsLabelBlobs: connected component labelling 115

7.11 LOOK-UP-TABLES (LUTS) ..117
7.11.1 PxsDynamicLUT: dynamic value transforms .. 118
7.11.2 PxsDynamicLUT3: dynamic 3-channel value transforms 119
7.11.3 PxsHistogramEqualize: histogram equalization 120
7.11.4 PxsSelectLUT: selectable value transforms.. 121
7.11.5 PxsStaticLUT: static value transforms... 122
7.11.6 PxsStaticLUT3: static 3-channel value transforms 123
7.11.7 PxsLUT8*: standard LUT initializers.. 124

7.12 MORPHOLOGY...126
7.12.1 PxsClose: morphological closing .. 127
7.12.2 PxsDilate: morphological dilation ... 128
7.12.3 PxsErode: morphological erosion ... 129
7.12.4 PxsOpen: morphological opening ... 130
7.12.5 PxsNonMaximaSuppressLine: clip pixels that are not a 2D maxima........... 131

7.13 NOISE GENERATORS ...133
7.13.1 PxsGaussianNoise: Gaussian noise generator .. 134
7.13.2 PxsPerlinNoise: Perlin noise generator .. 135
7.13.3 PxsSaltAndPepper: impulse noise overlay ... 136
7.13.4 PxsWhiteNoise: white noise generator .. 138

7.14 PLOTTERS..139
7.14.1 PxsPlot: plotted graphics .. 140

7.15 SYNC GENERATORS ..142
7.15.1 PxsTVSyncGen: TV sync generator... 143
7.15.2 PxsVGASyncGen: VGA sync generator .. 144
7.15.3 PxsVGASyncGenDynamic: adjustable VGA sync generator....................... 146

7.16 VIDEO I/O..148
7.16.1 PxsTVIn: TV input ... 149
7.16.2 PxsTVOut: TV output ... 150
7.16.3 PxsVGAIn: VGA input... 151
7.16.4 PxsVGAOut: VGA output... 153

7.17 VIDEO GENERATORS ...154

PixelStreams Manual

www.celoxica.com Page 4

7.17.1 PxsCheckerboard: checkerboard pattern generator 155
7.17.2 PxsConstant/PxsConstant3: constant color generator 156
7.17.3 PxsTestCard: test card generator... 157
7.17.4 PxsXorPattern: XOR pattern generator ... 158

7.18 VIDEO OVERLAYS...159
7.18.1 PxsBouncingBall: bouncing ball overlay .. 160
7.18.2 PxsConsole: text console overlay... 161
7.18.3 PxsCursor: pointer overlay ... 163
7.18.4 PxsGrid: grid overlay ... 165
7.18.5 PxsHistogramDisplay: generate a histogram overlay............................... 166
7.18.6 PxsOverlay: generic overlays .. 167
7.18.7 PxsRectangle: rectangle overlay .. 168

8 INDEX ..169

PixelStreams Manual

www.celoxica.com

Conventions
The following conventions are used in this document.

 ssage. These messages warn you that actions may damage your Warning Me
hardware.

 Handy Note. These messages draw your attention to crucial pieces of
information.

Hexadecimal numbers will appear throughout this document. The convention used is tha
of prefixing the number w

t
ith '0x' in common with standard C syntax.

ke this:

 italics like this:
 DestinationFileName

urly brackets around an element show that it is optional but it may be repeated any
umber of times.

 string ::= "{character}"

Sections of code or commands that you must type are given in typewriter font li
 void main();

Information about a type of object you must specify is given in
 copy SourceFileName

Optional elements are enclosed in square brackets like this:
 struct [type_Name]

C
n

PixelStreams Manual

www.celoxica.com

Assumptions & Omissions
This manual assumes that you:

• have used Handel-C or have the Handel-C Language Reference Manual

• are familiar with common programming terms (e.g. functions)

• are familiar with MS Windows

• are familiar with standard image processing and machine vision terminology

This manual does not include:

• instruction in VHDL or Verilog

• instruction in the use of place and route tools

• instruction in the use of DK Design Suite

• detailed description of image processing algorithms

PixelStreams Manual

www.celoxica.com Page 7

1 Introduction
PixelStreams is a library of parameterisable IP for creating video processing systems. IP
blocks (known as filters) are assembled into filter networks, connected by streams.

Filter networks may be assembled programmatically, in Handel-C, or graphically using the
PixelStreams GUI. Although the GUI is useful as a training tool, we strongly recommend
graduating to a programmatic style as this greatly increases the flexibility of the system.

PixelStreams supports a range of pixel formats, from traditional machine vision formats
such as 1-bit and 8-bit monochrome, to display and broadcast formats such as 8-bit RGB
and YCbCr, and a signed 16-bit high dynamic range format supporting image manipulation
at increased precision. The library supports both progressive and interlaced scan types, as
well as allowing for random access processing (where possible). All combinations of TV and
VGA, input and output are supported.

The core PixelStreams library is architecture and platform independent. Each platform
(board) supported by PixelStreams has an additional support library providing the
specialized sinks (video outputs) and sources (video inputs) for that platform. Where
external RAM support is needed (such as for framebuffers), the PAL APIs are used.

The PixelStreams architecture makes it easy to create custom filters for performing
specialized image processing operations. The most difficult aspect of creating pipelined
hardware is often handling flow control correctly: the PixelStreams architecture effectively
eliminates these issues by providing re-usable flow control components.

PixelStreams is designed primarily for dealing with high-speed video input processing and
analysis, and high-speed back-end video generation and display. Many machine vision
systems feature higher-level intermediate stages (such as object tracking), which typically
handle much lower data rates but with more algorithmic processing. These intermediate
stages are not currently addressed by PixelStreams, as they are typically better suited to
embedded microprocessors. Finally, whilst PixelStreams can be used for still image
processing, the high data rate, highly parallel nature of the generated hardware may be
area inefficient for such tasks.

1.1 Theory of operation

Pixel values, and associated synchronization and coordinate (screen position) information,
flow through streams from sources to sinks. A network operates synchronously, with each
stream passing one datum per clock cycle (a datum may be flagged as invalid, to allow for
rates of processing slower than one per clock cycle). A single datum can in theory contain
multiple pixels, although this is not supported by the current library. Multiple networks
running in different clock domains can be connected together to allow multi-rate
processing.

PixelStreams Manual

www.celoxica.com Page 8

1.2 Quick start

A simple filter network which displays a test card might be created as follows:

PxsVGASyncGen PxsTestCard PxsVGAOut

VGA compatible sync pulses and coordinates are generated by the source filter,
PxsVGASyncGen(). PxsTestCard() then generates a test pattern stream by outputting an
appropriate pixel color for each coordinate received. It also copies the sync pulses and
coordinates from its input to its output. PxsVGAOut() then displays the resulting image on
a VGA monitor.

 The examples in this section are reproduced using the PixelStreams
GUI (see page 32). This is a good way to get started quickly with
PixelStreams.

The source code for implem
 stan

enting the above network is provided in the "TestCard"
dard declarative form for a simple filter network:

cs }

eam declarations }
er declarations }

 { filter instantiations }
 { non-filter processing }

it

re
as

ams always come before output streams. Width and Height are
compile-time parameterization of the filter. Parameter arguments always come after
stream arguments.

example, and follows a

{ platform specifi
#include "pxs.hch"
void main (void)
{
 { str
 { oth

 par
 {

 }
}

A typical stream declaration is PXS_PV_S (Out, PXS_RGB_U8), which declares a stream
called "Out", with progressive VGA sync type, synchronous coordinates, and unsigned 8-b
RGB pixels. Declaring streams (see page 18) covers the syntax of stream declarations. A
typical filter instantiation is PxsTestCard (&VGASync, &Out, Width, Height), whe
VGASync and Out are previously declared streams (which are always passed to filters
pointers). Input stre

PixelStreams Manual

www.celoxica.com Page 9

The image can be altered by adding filters between the PxsTestCard() and PxsVGAOut()
filters:

PxsVGASyncGen PxsTestCard PxsInvert PxsVGAOut

The image displayed on the monitor will be the inverse of the previous image. Note that the
displayed image will remain correctly positioned on screen as the coordinates and sync
pulses are an integral part of the stream.

Some filters can overlay images onto other streams, for example:

PxsVGASyncGen PxsTestCard PxsGrid PxsVGAOut

The image displayed on the monitor will be the test card, with a grid overlayed on it.

Streams can be split and then merged:

PxsVGASyncGen PxsSplit

PxsXorPattern

PxsAverage

PxsCheckerboard

PxsVGAOut

The image displayed on the monitor will be an equal blend of a checkerboard and XOR
pattern. Note however that this technique will only work correctly if the latency between the
two filters is identical (in this case, 1 cycle). If it is not, the two streams will become
"skewed" with respect to each other. This can be corrected automatically by using the
PxsSynchronise() filter.

The coordinate component of streams can be manipulated independently of the pixel and
sync components. For example:

PxsVGASyncGen PxsDynamicRotate PxsTestCard PxsVGAOut

The image displayed on the monitor will be the test card, rotated by an amount specified by
the "Angle" argument to PxsDynamicRotate(). Note that if the PxsDynamicRotate() filter

PixelStreams Manual

www.celoxica.com Page 10

appeared AFTER the PxsTestCard() then the image would not be rotated - VGA displays
ignore the coordinate component and display in the usual raster scan order. This idea of
pre-transforming coordinate streams before doing image lookups is key to geometric
transforms within PixelStreams.

Not all filters can accept transformed ("asynchronous") coordinates - all filters check at
compile time that they are compatible with the streams connected to their terminals.
Untransformed coordinates can be re-created from sync pulses by the
PxsRegenerateCoord() filter.

Video capture is also straightforward:

PxsVGAIn PxsPL1RAMFrame
Buffer

Will capture a VGA (or DVI as appropriate) image and store it in an external RAM
framebuffer. However, in this example, no image will be displayed. To add display, the filter
network will need to be:

PxsVGAIn

PxsPL1RAMFrame
BufferDB

PxsVGASyncGen

PxsVGAOut

Note that we use a "DB" (double buffered) frame buffer here as both the video input and
video output are competing for RAM bandwidth. The stream created by PxsVGAIn() is
stored directly into one bank of RAM, whilst the coordinate stream created by
PxsVGASyncGen() is used to fetch pixels from the framebuffer and pass them to the output.

TV input is handled similarly, except that it requires the introduction of a color-space
converter:

PxsConvert

PxsPL1RAMFrame
BufferDB

PxsVGASyncGen

PxsVGAOut

PxsTVIn

The TV input is in luminance-chrominance format (YCbCr), whereas VGA display is in RGB
format. Here, we have chosen to do the color-space conversion before storing the image in

PixelStreams Manual

www.celoxica.com Page 11

the framebuffer, but this is not mandatory - the color-space converter could instead be
inserted just before PxsVGAOut(). The framebuffers (like most PixelStreams filters) are
polymorphic, which means they adapt automatically to the stream types they are
connected to. For example, the PxsConvert() filter requires no parameters: it
automatically deduces the conversion required from the types of the streams connected to
its terminals.

The above example requires two RAM banks, which is somewhat inefficient. If a design is
running at a sufficiently high clock rate, it is possible to share a single framebuffer between
TV input and VGA display. This is because VGA display has a blanking period during each
line in which no pixels need to be fetched. This provides sufficient time to store new pixels
that have arrived from the TV input. In order to buffer up these new pixels, we need to
introduce a PxsFIFO() filter. When the single-buffered framebuffer needs to fetch pixels for
display, it "blocks" its other input. This stops the FIFO from outputting pixels to its output
stream. Once the blanking period is reached, the input is unblocked, and the FIFO provides
the pixels to be written to the framebuffer. The FIFO must be of sufficient length to hold all
the pixels that can have arrived from the TV input during the visible period, otherwise pixels
will be lost.

PxsConvert

PxsPL1RAMFrame
Buffer

PxsVGASyncGen

PxsVGAOut

PxsTVIn PxsFIFO

The image displayed will be of the TV input. To the right of and below the image will
probably be some random data, as the VGA display resolution will not match the size of the
input TV image, and so the framebuffer will fetch junk data from the RAM. This can be fixed
by introducing a PxsClipRectangle() block to reduce the visible region-of-interest of the
screen. This can be placed either directly before the VGA output (which will result in the
same number of pixels being fetched, but some being then discarded), or between the sync
generator and the framebuffer (which will result in fewer pixels being fetched).

PixelStreams Manual

www.celoxica.com Page 12

This basic network provides the basis for simple video processing. For example, Sobel edge
detection:

PxsConvert

PxsPL1RAMFrame
Buffer

PxsVGASyncGen

PxsSobel

PxsTVIn PxsFIFO

PxsConvertPxsClipRectanglePxsVGAOut

The image fetched from the framebuffer is sent through a Sobel edge-detector. This
outputs a stream with monochrome pixels of type "signed 16". This type allows for the
larger range of values created by some filters. For example, without scaling the maximum
value from the Sobel edge detector is 2040, well outside what can fit into an 8-bit range.
Using a signed 16-bit pixel type avoids the need for intermediate scaling or saturation. This
type is then converted to a viewable form by a further PxsConvert() filter, clipped and then
displayed. The image is that of the edge detected video input.

An enormous variety of video processing, analysis and generation is possible by composing
filters into networks. PixelStreams is shipped with a large number of examples, covered in
Description of examples (see page 28).

PixelStreams Manual

www.celoxica.com Page 13

2 Streams
A stream is a container through which data is passed. It should have exactly one source
filter and one sink filter attached to it. A stream consists of three top-level components:

• A "Valid" flag (flows downstream, from source to sink)

• One or more data components (flows downstream)

• A "Halt" flag (flows upstream, from sink to source)

On any given cycle, the Valid flag indicates whether the data components are valid or not.
Valid data appears exactly once (and for exactly one clock cycle). The Halt flag indicates a
request by a downstream filter that an upstream filter should stop producing valid data as
soon as possible. A filter is described as "haltable" if it can respond to a halt request
immediately, i.e. if on cycle x Halt is asserted, then Valid will be 0 on cycle x+1. No filter can
respond more quickly than this as the Valid flag is registered.

The data component of a stream consists of:

• An "Active" flag (required)

• Pixels (optional)

• Coordinates (optional)

• Sync pulses (optional)

The Active flag is asserted in the current "region-of-interest" of the image. The coordinates
component gives the (X, Y) location the corresponding pixel. The sync pulses component
gives information about end-of-line and end-of-frame (and potentially the signals needed
to drive a monitor).

A stream is said to be image forming if it contains both pixels and sync pulses (capable of
aligning those pixels in raster scan format).

2.1 Pixel types

The pixels component consists of pixel shades/colors in one of a number of possible "pixel
types". The possible pixel types are:

PXS_EMPTY No pixels
PXS_MONO_U1 Binary (black and white)
PXS_MONO_U8 Monochrome, unsigned 8-bit greyscale

PXS_MONO_S16 Monochrome, signed 16-bit greyscale
PXS_RGB_U8 RGB, unsigned 8-bit color (total 24-bits)
PXS_YCbCr_U8 YCbCr, unsigned 8-bit color (total 24-bits)
PXS_EMPTY indicates that a stream does not contain any pixels. Such streams are created
by filters such as sync generators (which create coordinates and sync pulses but no image).

PixelStreams Manual

www.celoxica.com Page 14

PXS_MONO_U1 pixels are typically the result of some binary characterization and can be
processed and stored using much less space than other types. Note however that the
standard framebuffers provided by PixelStreams make no effort to pack the data efficiently
(they are packed as one pixel to one location). Users should create custom framebuffers if
they require an alternative behaviour.

PXS_MONO_U8 pixels are used by most machine vision applications as they provide a good
trade-off between dynamic range and storage/computation requirements.

PXS_MONO_S16 pixels are used where greater dynamic range is required. They can be used
as when dealing with 12-bit sources such as some CameraLink cameras. In addition, they
can be used to avoid (or alleviate) loss of information when doing arithmetic manipulations
on images. Being signed, they can represent abstract non-intensity values such as intensity
gradients.

PXS_RGB_U8 pixels are used when displaying streams on monitors, or when taking images
from non-camera sources such as PCs. They consists of three 8-bit channels, R, G and B for
Red, Green and Blue respectively.

PXS_YCbCr_U8 pixels are used in broadcast applications, and are defined by the ITU-R
BT.601 standard. They consist of three 8-bit channels, Y (Luminance, or brightness), Cb
(Chrominance-Blue) and Cr (Chrominance-Red).

A stream will contain exactly one of these types. This list may be extended in future (for
example, to support packing of multiple pixels into a single datum).

2.1.1 Ranges of pixel types

The range of values for the various pixel types are as follows:

• PXS_MONO_U1 has only two values 0 (defined as black) and 1 (defined as white).

• PXS_MONO_U8 has 256 values, ranging from 0 (defined as black) to 255 (defined
as white).

• PXS_MONO_S16 has 65,536 values, ranging from -32768 to 32767. Most of this
range does not have a direct meaning in terms of color, as we continue to define
0 as black and 255 as white. This does not preclude applications from using their
own local definition of black and white (for example 0 to 4095), but should be
borne in mind when using the standard conversion filters.

• PXS_RGB_U8 has three independent channels (R, G and B) each of which has 256
values, ranging from 0 to 255. Hence there are 256^3 = 16,777,216 possible
values. Black is defined as the triple (0, 0, 0), and white is defined as the triple
(255, 255, 255).

• PXS_YCbCr_U8 has three independent channels (Y, Cb, Cr). Y has 220 possible
values ranging from 16 to 235. Cb and Cr have 225 possible values, ranging from
16 to 240. Hence there are 220*225*225 = 11,137,500 possible values. Note
however that some of these do not correspond to valid colors, and in addition
values outside this range are possible as a result of operations on image data.
Black is defined as the triple (16, 128, 128), and white is defined as the triple

PixelStreams Manual

www.celoxica.com Page 15

(235, 128, 128). (Note that 128 is actually offset zero for the chrominance
channels, and therefore means no color offset).

2.1.2 Conversions between pixel types

Conversions between the standard types respect the definitions of black and white whilst
attempting to preserve as much information as possible. For example, converting
PXS_MONO_S16 to any other type will first clamp its value to the range 0 to 255.

Converting from RGB to any MONO type takes into account the relative luminance of each
color channels, using the standard factors (0.299, 0.587, 0.114).

Converting between RGB and YCbCr is a slightly tricky issue. The ranges for YCbCr specified
above are clearly defined by BT.601. This document also defines the ranges for digital RGB
as being from 16 (black) to 235 (white). This definition is at odds with the definition used in
PCs and machine vision (and as adopted above). As a result, the conversions between
YCbCr and RGB are NOT as defined by BT.601. Custom filters can easily be written to
implement the BT.601 conversions if desired. The conversion from RGB to YCbCr (and vice
versa) is lossy, and so such conversions should be avoided wherever possible.

Please note that many compression schemes (such as JPEG) which use
luminance-chrominance color spaces will often use "full scale" types where each channel
can range over the full 0 .. 255. Interchanging between these and YCbCr defined above
without taking account of this difference will result in under- or over-saturated images.

2.2 Coordinate types

A stream can contain three types of coordinates:

• PXS_COORD_NONE

• PXS_COORD_ASYNCHRONOUS

• PXS_COORD_SYNCHRONOUS

PXS_COORD_NONE indicates that the stream doesn't contain any coordinates. This is
sometimes done deliberately by the user to reduce the storage or buffering requirements of
a stream (coordinates can be regenerated from sync pulses, if they exist). Coordinates can
be discarded from a stream simply by changing its declaration appropriately.

PXS_COORD_ASYNCHRONOUS indicates that the stream contains asynchronous coordinates.
This means that the coordinates do not relate directly to the sync pulses. These are typically
the result of a coordinate transform.

PXS_COORD_SYNCHRONOUS indicates that the stream contains synchronous coordinates, that
is to say, the coordinates are synchronized to the sync pulses. This means that the
coordinates start at (0, 0) and proceed linearly (1, 0), (2, 0) etc until the end of the line,
when they go to (0, 1) and so forth. Synchronous coordinates are produced by sync
generators, and are useful in indexing operations.

PixelStreams Manual

www.celoxica.com Page 16

In either the asynchronous or synchronous cases, the coordinates consist of a Coord.X and
Coord.Y component, both signed 16-bit. The large size and signed nature of coordinates
allows them to be transformed (translated, rotated and warped in other ways) without
encountering overflow problems.

By common convention, (0, 0) is defined to be the top-left of an image formed by a stream,
increasing positively in the X direction (rightwards) and the Y direction (downwards).

2.3 Sync types

A stream can contain sync pulses of the following types:

• PXS_SYNC_NONE

• PXS_SYNC_INTERLACED

• PXS_SYNC_INTERLACED_TV

• PXS_SYNC_PROGRESSIVE

• PXS_SYNC_PROGRESSIVE_VGA

PXS_SYNC_NONE indicates that the stream doesn't contain sync pulses. This is an unusual
stream type as it does not represent any form of raster scanned image. A stream like this
will therefore tend to contain a combination of asynchronous coordinates with pixels. This
stream type is created by the special PxsPlot() filter.

PXS_SYNC_INTERLACED indicates that the stream contains an interlaced image. In an
interlaced image, a complete image is made up of two sequential fields; an "even" field
consisting of lines 0, 2, 4, 8, ..., followed by an "odd" field consisting of lines 1, 3, 5, 7, ...
. Interlaced image types are traditionally used in a broadcast setting (such as PAL, SECAM,
NTSC or HDTV 1080i). Interlaced images can be converted to progressive images (which
are better suited to 2D image processing) using a framebuffer.

PXS_SYNC_INTERLACED_TV is a strict subset of PXS_SYNC_INTERLACED, in which the sync
pulses are compatible with a TV standard mode, and therefore capable of driving a suitable
television or other output device.

PXS_SYNC_PROGRESSIVE indicates that a stream contains a progressively scanned image. In
a progressively scanned image, each line follows on immediately from the preceding line: 0,
1, 2, 3, Progressive image types are used in computer generating images (VGA or DVI),
for HDTV 720p, and for most forms of 2D image processing.

PXS_SYNC_PROGRESSIVE_VGA is a strict subset of PXS_SYNC_PROGRESSIVE, in which the sync
pulses are compatible with a VGA standard mode, and therefore capable of driving a
suitable VGA or DVI monitor (or other output device).

In all the non-empty cases, the sync component consists of four flags:

• Sync.HSync Horizontal sync (polarity undefined)

• Sync.VSync Vertical sync (polarity undefined)

• Sync.Blank Blanking (0 = Visible, 1 = Blanked)

PixelStreams Manual

www.celoxica.com Page 17

• Sync.Field (0 = Even, 1 = Odd)

For progressive sync types, Sync.Field is always 0.

2.4 Stream compatibility

An important concept when dealing with different stream types is the idea of
"compatibility". For many (but not all!) filters in the PixelStreams library, it is stated that
the output stream type must be compatible with the input. This is a less strict requirement
than the types being identical. For example, a PxsDelay() filter which takes in a stream of
pixel type PXS_RGB_U8, might have its output directed to a stream of pixel type PXS_EMPTY.
In this case, the user is deliberately discarding pixels. On the other hand, if the input type
was PXS_EMPTY and the output type PXS_RGB_U8 then a compile-time error would be
produced, as this filter cannot create pixels where none previously existed.

In general, each filter checks that its input streams meet its minimum requirements, and
checks that its output streams do not exceed the maximum it is capable of generating
(which may be dependent on the type of its inputs).

So for an input stream "In" and an output stream "Out", compatibility is defined as follows:

• Out is compatible with In when all of its components (pixel type, coordinate type,
sync type) are compatible.

This therefore requires definition of compatibility for each component, as follows.

Pixel type

Out is compatible if its pixel type is PXS_EMPTY, or if its pixel type is identical to In. In other
words, if the output pixels are thrown away (by being used in a PXS_EMPTY stream), then
the type of the input is irrelevant. In all other cases, the output must be the same as the
input.

Coordinate type

Out is compatible if its coordinate type is "less than" or equal to that of In. We define
PXS_COORD_NONE < PXS_COORD_ASYNCHRONOUS < PXS_COORD_SYNCHRONOUS. So
synchronous coordinates can be used as asynchronous coordinates (but not the other way
around), and both types of coordinates can be thrown away by using them in an output
stream of coordinate type PXS_COORD_NONE.

Sync type

Out is compatible if its sync type is "less than" or equal to that of In. In this setting:

 PXS_SYNC_NONE < PXS_SYNC_INTERLACED < PXS_SYNC_INTERLACED_TV

and

 PXS_SYNC_NONE < PXS_SYNC_PROGRESSIVE < PXS_SYNC_PROGRESSIVE_VGA

PixelStreams Manual

www.celoxica.com Page 18

So a stream containing sync pulses capable of driving a TV or monitor can be passed into a
stream containing sync pulses that cannot. All sync information can be thrown away by
outputting into a stream containing sync pulses of type PXS_SYNC_NONE. Interlaced and
progressive sync pulses are never compatible.

2.5 Declaring streams

Streams are declared explicitly, with the user required to specify exactly the type of
coordinates, sync pulses and pixels contained by the stream. Although this is somewhat
cumbersome, it has two advantages:

1. The stream type can be checked statically by the filters it is connected to, such
that the filter can be sure that it is receiving all the components it requires at its
input stream(s), and is creating all the components required by its output
stream(s).

2. The filters can be polymorphic; they can recognize the type of their inputs, and
(at compile time) modify their behaviour accordingly.

Streams can be declared with each component type specified explicitly as follows:

 PXS_STREAM_DECLARE_STATIC (Name, PixelType, SyncType, CoordType);

Where Name is the identifier name to be declared, and PixelType, SyncType and CoordType
are the type enumerations as previously defined. So a typical declaration might be:

 PXS_STREAM_DECLARE_STATIC (MyStream, PXS_RGB_U8, PXS_PROGRESSIVE_VGA,
 PXS_COORD_SYNCHRONOUS);

In addition PXS_STREAM_DECLARE_STATIC, there exists PXS_STREAM_DECLARE (which may
only be used for global streams that are being exported to other files), and
PXS_STREAM_DECLARE_EXTERN (for importing global streams exported from other files).

This form of declaration is rather cumbersome, and so a number of short-hands exist. These
follow the form:

 PXS_SyncType_CoordType (Name, PixelType);

Where SyncType is one of:

N PXS_SYNC_NONE

I PXS_INTERLACED

IT PXS_INTERLACED_TV

P PXS_PROGRESSIVE

PV PXS_PROGRESSIVE_VGA

and CoordType is one of:

PixelStreams Manual

www.celoxica.com Page 19

N PXS_COORD_NONE

A PXS_COORD_ASYNCHRONOUS

S PXS_COORD_SYNCHRONOUS

So the example declaration above is reduced to:

 PXS_PV_S (MyStream, PXS_RGB_U8);

In practice, relatively few stream types are commonly used. As a guide, these are:

PXS_I_S Typically from TV Input
PXS_P_S Typically from VGA Input
PXS_IT_S Created by TV sync generator, suitable for TV output
PXS_PV_S Created by VGA sync generator, suitable for VGA output
PXS_PV_A VGA with transformed coordinates, also suitable for VGA output
PXS_N_A Created by PxsPlot() filter
In addition, two auxiliary macros exist for custom filter writers:

• PXS_SAME (Name, Stream) declares a new stream called "Name" with the same
types as "Stream".

• PXS_GENERIC (Name) declares a new stream called "Name" with invalid
properties - this is a shorthand that can be used for streams in a pipeline whose
types will not be checked.

PixelStreams Manual

www.celoxica.com Page 20

2.6 Image formation

In an image forming stream (that is, one which contains pixels and sync pulses), the total
scanned area consists of a number of overlapping regions, as shown.

Visible

H
S

yn
c

VSync

Blanked

Active

In all regions, valid datum are indicated by the "Valid" flag being 1.

The "active" region is the area to be processed (also known as a "Region-Of-Interest" or
ROI). In an unclipped image, the active region is the same as the visible region. In this
region, the Active flag is 1, and the Sync.Blank flag is 0. This region may be of any shape,
and always lies within the visible region.

The "visible" region is the allowable area in which visible pixels may occur. In this region,
the Sync.Blank flag is 0. (In other words, this is the exact inverse of the blanked region).
This region is always rectangular in shape, stretching from synchronous coordinates (0, 0)
to (VisibleWidth - 1, VisibleHeight - 1), where VisibleWidth and VisibleHeight are the size of
rectangular image formed.

The "blanked" region is the area that continues horizontally beyond each line and vertically
beyond each frame. Although coordinates do not need to be valid in this region (even for
PXS_COORD_SYNCHRONOUS streams), they conceptually cover two overlapping regions:
horizontal blanking, from (VisibleWidth, 0) to (TotalWidth - 1, TotalHeight - 1), and vertical
blanking from (0, VisibleHeight) to (TotalWidth - 1, TotalHeight - 1). In this region, the
Active flag is 0 and the Sync.Blank flag is 1. This region can be any shape, although it is
typically rectangular.

PixelStreams Manual

www.celoxica.com Page 21

The final two regions are those in which horizontal and vertical sync are asserted. Horizontal
sync is asserted for a brief period (>= 1 datum) in the horizontal blanking region defined
above. Vertical sync is asserted for a period (>= 1 line) in the vertical blanking region.
Active data separated by horizontal sync are on different lines, whilst active data separated
by vertical sync are on different frames (or fields, in the case of interlaced sync types). In
both regions, the Active flag is 0 and the Sync.Blank flag is 1. The polarity of Sync.HSync
and Sync.VSync is not defined, and so an end-of-line or end-of-frame condition can only be
detected by looking for transitions in these flags.

2.7 Ensuring pixels are not lost

In order to never lose data, a given filter (or network of filters) must satisfy several
conditions:

1. It must always accept and process (or store) valid data at its inputs.

2. The source driving the filter (or network) must be haltable.

3. It must assert Halt "n" cycles before it will run out of space to store valid data,
where n is the number of cycles of latency between its input and the haltable
source.

Individually satisfying these conditions for every filter would be extremely cumbersome.
Instead, most filters act as simple pipelines, passing the Valid flag through along with the
(processed) data associated with it (with the same number of cycles of latency as the data),
and passing the Halt flag upstream (with 0 cycles of latency).

Therefore, in order to build a lossless filter network, a sequence of filters is typically finished
with a PxsFIFO() filter, who's depth is just over double of latency of the sequence. This is
because the FIFO will assert "Halt" when it is more than half-full (and similarly, de-assert it
when it is less than half-full). So a network such as:

PxsVGASyncGen PxsSomeFilter
Latency 7

PxsOtherFilter
Latency 5

PxsFIFO
Depth=32

Will never lose pixels, as it's behaviour will be:

• If the output of the FIFO is halted, it will stop producing valid data on the next
cycle and start to fill up.

• Once it has 16 items in it, it will assert Halt, which will propagate immediately
back up to the sync generator.

• The sync generator will stop producing valid data on the next cycle.

• The remaining (7+5)=12 items in the two filters will propagate through to the
FIFO, with it eventually having (16+12)=28 elements in it. The network will then
be fully halted.

• Once the output of the FIFO is un-halted (unblocked), it will start to output valid
data on the next cycle.

PixelStreams Manual

www.celoxica.com Page 22

• Once the FIFO has only 16 items in it, it will de-assert Halt, which will propagate
immediately back up to the sync generator.

• The sync generator will start producing valid data, which will arrive at the FIFO
12 cycles later, before it is completely empty.

In this way, once the network has started up, its output is always ready and able to provide
data at one per cycle, and never loses data.

PixelStreams Manual

www.celoxica.com Page 23

3 Writing custom filters
Most filters follow a fairly standard pattern:

macro proc PxsMyFilter (In, Out, Parameter)
{
 // internal streams
 PXS_GENERIC(Stage0);
 PXS_GENERIC(Stage1); // ... more

 // other declarations
 // ...

 // assertions checking the types of input and output streams
 PXS_EXPECT_PIXEL_TYPE (In, PXS_RGB_U8);
 PXS_PROVIDE_COORD_ASYNCHRONOUS (Out);
 // ...

 par
 {
 // single-cycle (per-datum) processing pipeline
 // with 3 cycles of latency
 while (1)
 {
 PxsCopyVAPCSH (In, &Stage0);
 // processing for first stage of pipeline

 PxsCopyVAPCSH (&Stage0, &Stage1);
 // processing for second stage of pipeline

 PxsCopyVAPCSH (&Stage1, Out);
 // processing for last stage of pipeline
 }

 // multi-cycle processing, e.g. per frame
 while (1)
 {
 // ...
 }
 }
}

There are several conventions to note here:

• Streams are always passed to filters by reference (i.e. as pointers)

• In the declarations of filters, the argument lists are always in the order:

• Input streams
• Output streams
• Parameters (constant or variable)

PixelStreams Manual

www.celoxica.com Page 24

• If there is only one input stream, it is usually named In.

• If there is only one output stream, it is usually named Out.

• Filters with latency greater than one have internal streams that are declared with
PXS_GENERIC.

• Input streams are checked to ensure that they provide the pixel, sync and coord
types needed by the filter. Consult the pxs_private.hch header file for a list of such
macros.

• Output streams are checked to ensure that they do not expect any component
types not provided by the filter. Consult the pxs_private.hch header file for a list of
such macros.

• The stream processing is all done with a single cycle pipeline of n stages.

• Each stage reads data only from the stream directly before it, and writes data
only to the stream directly after it.

• PxsCopy*() macros can be used to copy stream components that are not being
altered. There are a number of macros providing common subsets of the letters
"VAPCSH", where "VAPCSH" corresponds to Valid, Active, Pixel, Coord, Sync and
Halt. The first five components are copied from input to output, the last
component is copied from output to input. So, a stage that alters pixel data but
keeps all other components intact would use the PxsCopyVACSH() macro.

• Multi-cycle processing (such as per-frame updates) are handled in parallel with
the stream processing, so that they do not affect the stream flow.

The contents of the processing at each stage are entirely dependent on the processing that
is being performed. As PixelStreams is provided with source of the complete library of
standard filters, we recommend using this as a guide for implementing custom filters. A
good grounding in Handel-C programming is essential; please consult the DK manuals and
consider attending one of Celoxica's Handel-C training courses.

PixelStreams Manual

www.celoxica.com Page 25

4 Platform specifics
The only platform specific filters within the PixelStreams libraries are those concerned with
getting video streams in and out of the design. In all cases, designs should be linked with
the pxs.hcl core library, and the appropriate platform specific library given below.

4.1 RC200 / RC200E / RC203 / RC203E

Libraries

Select the appropriate one of pxs_rc200.hcl, pxs_rc200e.hcl, pxs_rc203.hcl,
pxs_rc203e.hcl

PxsVGAIn

Platform does not support VGA input.

PxsTVIn

Platform has a single TV input (0). This input has three configurations:

0 Camera input

1 Composite (CVBS) input

2 S-Video (YC) input

PxsVGAOut

Platform has a single VGA output (0). This output has a single configuration (0). When the
clock rate is 25.175MHz, Expert (E) type boards will have the TFT LCD screen driven in
parallel with the VGA DAC. At this clock rate, only the standard 640 x 480 @ 60Hz (VGA)
mode should be used.

PxsTVOut

Platform has a single TV output (0). This output has two configurations: 0 for NTSC, and 1
for PAL.

Please note that VGA output and TV output share a DAC, and so only one may be driven at
any given time.

If your application processes TV input, and you wish to display output on the RC200E /
RC203E TFT LCD, please see the "MultiDomain" example, which shows efficient use of RAM
bandwidth using multiple clock domains.

PixelStreams Manual

www.celoxica.com Page 26

4.2 RC300 / RC300E

Libraries

Select the appropriate one of pxs_rc300.hcl or pxs_rc300e.hcl

PxsVGAIn

Platform has two identical DVI inputs (0 and 1), each with a single configuration (0). When
run with PxsVGAIn, an EDID slave is also instantiated allowing a host to query the board
parameters. Note that these inputs only handle true DVI-D digital data, not DVI-I analogue
VGA or VGA input via an adaptor.

PxsTVIn

Platform has two TV inputs (0 and 1), each with two configurations: 0 for decoding
composite (CVBS) inputs, and 1 for decoding S-Video (YC) inputs.

PxsVGAOut

RC300 has two video outputs (0 and 1), driving outputs 0 and 1 respectively. Both VGA and
DVI are driven in parallel. RC300E (Expert) has three video outputs. Output 0 drives the TFT
LCD, and should only be run at a clock rate of 65MHz with the standard 1024 x 768 @ 60Hz
(XGA) mode. Outputs 1 and 2 drive VGA/DVI outputs 0 and 1 respectively. For both boards,
each output has exactly one configuration.

PxsTVOut

Platform has two identical TV outputs (0 and 1), each with two configurations: 0 for NTSC,
and 1 for PAL.

4.3 Simulation

The simulation platform re-uses the PAL Sim virtual platform to provide video input and
output. At this time, only static images can be fed into the video input.

Library

pxs_sim.hcl

PxsVGAIn

Platform simulates four identical VGA inputs, each with 5 configurations, offering a range of
resolutions:

PixelStreams Manual

www.celoxica.com Page 27

0 640x480

1 800x600

2 1024x768

3 1280x1024

4 1600x1200

PxsTVIn

Platform simulates four identical TV inputs, each with 3 configurations, offering a range of
resolutions:

0 720x480 (NTSC SDTV)

1 720x576 (PAL SDTV)

2 1920x1080 (1080i HDTV)

PxsVGAOut

Platform simulates four identical VGA outputs, each capable of handling resolutions up to
1920x1200.

PxsTVOut

Platform simulates four identical TV outputs, each capable of handling resolutions up to
1920x1200.

 Tip: When simulating filter networks that include framebuffers, it is
useful to pre-load the framebuffer with a frame of information. Use the
simulated PL1RAM "dump now" option to dump the contents of a (filled)
framebuffer to a file, then use the "load at startup" option to pre-load the
framebuffer with that image for subsequent simulation runs.

PixelStreams Manual

www.celoxica.com Page 28

5 Description of examples
PixelStreams comes with a large number of simple examples demonstrating the use of most
of the included filters. The examples workspace can be accessed by going to
Start>Programs>Celoxica>Platform Developer's Kit>PixelStreams>Examples Workspace [DK].

PixelStreams Manual

www.celoxica.com Page 29

A description of these examples is given below.

Affine Arbitrary affine coordinate transforms. Requires RC300. Coefficents are
entered using FTU3 "RegisterMap" functionality, in signed 9.8-bit fixed
point. For example, coefficients { 256, 0, 0, 0, 256, 0 } is the identity
transform.

Analysis Display the results of the PxsAnaylse() filter. A histogram of pixel
intensity (value) is overlayed, alongside a console display of average
pixel value, etc. In addition, two overlayed cross hairs show the location
of (one of) the minimal and maximal valued pixels.

Blend Show a series of different blends. The two images being blended are the
framebuffered input TV 0, and the standard test card. Also
demonstrates the multiplexing and resynchronization of multiple
streams.

Clip Demonstrate clipping of pixels before and after framebuffering. A
clipping circle bounces around the screen, only allowing pixels within its
radius to be updated. The image from the framebuffer is then clipped to
a rectangle before display.

Console Demonstrate the PxsConsole() filter and its associated utility macros.
This is useful for overlaying status information onto a video stream.

Convolution 3x3 convolution with arbitrary filter coefficients. Requires RC300.
Coefficents (plus shift and scale factors) are entered using FTU3
"RegisterMap" functionality. See the convolution.hcc source code for some
sample coefficients to try (initial screen will be black!).

CustomCoord An example of a custom coordinate transform. Coordinates are
sinusoidally warped in both horizontal and vertical directions before
being fed into the standard test card generator.

Dither Dither a test card to a four shades of red, eight of green and two of blue
(a total of 64 colors). Shows the use of ordered dither.

DitherVideo Dither a TV video input to two shades each of red, green and blue (a
total of 8 colors). Uses a fixed look-up-table to achieve approximate
gamma correction (factor 2.0).

EdgeDetect Sobel edge detection on TV input. No scaling or thresholding of the
results is performed, and so the results may vary from text book
examples.

FrameBuffer Simple framebuffering of TV input, and display on VGA output.

FrameDifference Demonstrate the use of two framebuffers for inter-frame analysis. The
first framebuffer looks up from the same coordinate as the input
stream. The two pixels are differenced, and the result stored in a
second (display) framebuffer.

GUI Demonstrate the use of the cursor (mouse pointer) overlay, and
integration with the PalMouse core to provide interactive image
operations. Clicking and dragging inverts an area of the test card. Using
the mouse wheel selects a different mouse pointer.

PixelStreams Manual

www.celoxica.com Page 30

HistogramEq Dynamic histogram equalization of TV input. The input video stream is
analysed to determine its histogram. The framebuffered output is then
remapped using a dynamic look-up-table to achieve a approximately
flat histogram of intensity (equivalently, a linear cumulative
histogram). So an image with intensities concentrated in the middle of
the range (one with poor contrast), will tend to have the contrast
stretched. A light or dark image will be darkened or lightened
respectively. This technique is a simple way of automatically
compensating for poor brightness or contrast.

Join Demonstrate the prioritized merging of two streams. Video input is
simultaneously framebuffered and displayed. At the same time, using
remaining RAM bandwidth, a simple pattern is plotted into the
framebuffer.

LUT Demonstrate use of static look-up-tables (LUTs) to transform color
values. The color channels of a TV image are independently
transformed, resulting in an unusually colorful display.

LabelBlobs Label connected dark objects in the image, and plot green squares
around their bounding boxes. Works best on images such as text and
logos.

Laplacian5x5 Perform a 5x5 Laplacian (high pass) convolution on a TV input.
Demonstrates the use of generic 5x5 convolvers.

MedianFilter Overlay salt-and-pepper (impulse) noise onto a TV input, and then
attempt to remove it using linear filtering (Gaussian blur) and
non-linear filtering (median filtering). The probability of noise varies
with time. At low levels of noise the median filter is clearly superior to
the Gaussian filter in terms of image degradation.

Morphology Demonstrate simple greyscale morphology operators (erosion and
dilation) on a TV input. The output image alternates between the two.
Erosion tends to make bright objects smaller and dark ones larger,
whilst dilation does the opposite.

MotionBlur Demonstrates video feedback and blending to achieve frame
averaging. The last frame is blended with the new one to create a new
image which is stored in a second framebuffer. The effect is to average
out noise and transient effects in the image.

MultiDomain Passing of streams across clock domains for multi-rate processing. TV
input is framebuffered in a 65MHz clock domain is transmitted to a
display in a 25.175MHz clock domain. Flow control correctly manages
the transmission of data and the blocking of the sending process.

Noise Show a variety of different noise sources. The display alternates
between white noise and Gaussian noise, dynamic and fixed pattern.
The type of noise is overlayed using a scaled console, and the R, G, B
histograms of the noise are overlayed at the bottom of the screen.

PerlinRipple Framebuffer TV input, but displace lookups using a Perlin noise
function, resulting in a slow rippling effect.

PixelStreams Manual

www.celoxica.com Page 31

Plot Plot a simple pattern, using the PxsPlot() filter attached to a
framebuffer.

Pong Simple bat-and-ball game using video overlay filters.

Reader Pre-load an external RAM with an image drawn using ordinary
PalPL1RAM accesses, then display it using a PixelStreams filter
network.

Rotate Display a rotating test card. Demonstrates simple coordinate
transformations, translation and rotation.

RotateVGA Framebuffer and dynamically rotate VGA input.

Scale Demonstrate coordinate scaling, upsampling a TV input to VGA display
size.

SelectLUT Cycle through a number of different look-up-table color value
transformations, displaying the function at each stage.

Sharpen Sharpen the TV image and display on the VGA output. This uses the
built-in PxsSharpen3x3() filter, which as a typical linear filter is quite
prone to amplifying noise.

Stereo Framebuffer two TV inputs, and combine them into a single output, with
input 0 being turned into purple and input 1 being turned into green.

TVOut Simple test card on TV output.

TestCard Simple test card on VGA output.

VGAIn Framebuffer and display the VGA input. Uses double buffered
framebuffer to provide sufficient RAM bandwidth. Clock rate needs to be
higher than the dot clock of the input, otherwise pixels may be dropped.
If the clock rates are extremely close (for example, XGA input at
65MHz), pixels may be dropped in periodic ways, giving rise to unusual
"wipe" effects.

VGAtoTV Framebuffer the VGA input, and display it on the TV output.
Demonstrates multi-rate design techniques.

VideoGen Demonstrate a sequence of different video generators and overlays,
changing between an XOR pattern, a checkerboard, a grid and a
bouncing ball.

PixelStreams Manual

www.celoxica.com Page 32

6 PixelStreams GUI
The PixelStreams GUI is supplied to enable users to quickly and efficiently create hardware
applications which use the PixelStreams library.

The GUI provides an environment in which filters and streams from the PixelStreams library
can be linked together create a system. This system can then be built to create a Handel-C
source file and a DK project and workspace.

The main features are:

• Easy to use graphical display.

• Generates Handel-C source code and project for Celoxica's DK Design Suite.

• Easy to upgrade with extra features to the PixelStreams library.

• Targets Celoxica RC200, RC203 and RC300 series boards, and simulation
libraries.

To run the PixelStreams GUI you will need

• Celoxica's PDK (version 3.1 or later).

• Celoxica's DK Design Suite (version 3.1 or later).

PixelStreams Manual

www.celoxica.com Page 33

6.1 Adding a filter

Filters are represented in the GUI as blocks with a number of inputs and outputs:

Filters can be added in three ways:

• By selecting them from the Project>New filter menu:

• By selecting them from the "Filter ToolBox" that appears on the right of the GUI at
startup. This can be shown or hidden from the View menu or toolbar icons:

• By selecting them from a context menu on the canvas (right click):

In all cases, the filter is added to the top-left of the current canvas and can be left-clicked
and dragged into position.

PixelStreams Manual

www.celoxica.com Page 34

To remove a filter from your design, open the filter context menu by right-clicking over the
required filter, and select Remove Filter.

Properties

Once the filter is created, its name and properties can be set via the Filter Properties
window, which is by default docked on the left hand side. If the properties dock window is
open, clicking on the filter will select its properties for viewing. If the properties dock
window is not open, double clicking will open it and select the desired properties for
viewing.

This window allows users to set the parameters for this filter by typing in the table.

6.2 Creating a stream

Streams connect filters together, allowing the pixel data or other data to flow between the
filters. To create a stream an output port must be clicked and the stream is dragged to rest
over an input port. If the stream is not dragged to rest over an input port it will be
automatically deleted.

If a stream has been joined to the wrong filter or input port, it can be dragged to another.
Select the stream by clicking on the input port area, and drag it to the correct port.

To remove a stream from your design, open the stream context menu by right-clicking on
the required stream, and select Remove Stream.

PixelStreams Manual

www.celoxica.com Page 35

Properties

Once the stream is created, its name and properties can be set via the Stream Properties
window. If the properties dock window is open, clicking on the stream will select its
properties for viewing. If the properties dock window is not open, double clicking will open
it and select the desired properties for viewing.

This window allows the user to set the name of the stream, and the type of data it will carry.
The name entered will be the declaration name of the stream in the generated Handel-C
code. The pixel type, coordinate type and the sync type of the data stream can also be set
using the respective drop down boxes.

The PixelStreams GUI uses heuristics to insert the most likely types of stream required in
designs, and to propagate those types throughout the design. The user can override these
types at any time. The GUI does not check types before generating the Handel-C design,
and so it is possible to create designs which fail to compile in DK.

6.3 Generating and compiling the design

The PixelStreams GUI can generate any design to create Handel-C source code, with its
corresponding project and workspace.

Generating Handel-C

The Handel-C source can be generated by clicking on the above icon on the main toolbar or
selecting Generate Code from the Build menu. Its shortcut key is F7.

PixelStreams Manual

www.celoxica.com Page 36

Generating projects and launching DK

The Handel-C source plus a DK project and workspace can be generated by clicking on the
compile button, or selecting Compile from the Build menu (shortcut key F5). This also
launches DK, from where an appropriate configuration can be selected and final compilation
of the design can be started.

The project is created with seven pre-set configurations targeted at specific boards: RC200,
RC200E, RC203, RC203E, RC300, RC300E and Sim.

6.4 File menu

The file menu is accessible from the toolbar and it has the following options:

• New - Closes the current project and creates a new blank project with the
specified name.

• Open - Opens a previously saved project file and loads the design.

• Close - Closes the current project.

• Save - Saves the project to the previously specified location.

• Save As - Saves the project to a new file.

• Exit - Exits the PixelStreams GUI application.

6.5 Project properties

The project properties dialog allows the user to set certain values and options for the
current design. It is accessible by selecting Project > Project Properties from the menu, or clicking
this icon:

The Project Properties dialog has four tabs:

• Name - Specifies the name of the design and the output directory for generation.

• Custom Code - Allows the user to modify and add new custom code to be
inserted into the generated design.

PixelStreams Manual

www.celoxica.com Page 37

The Name tab

The name tab allows you to change the name of the design and the directory in which the
output files will be generated. It also shows the names of the DK project and workspace that
will be generated.

The Custom Code tab

This page allows you to modify the boilerplate code that will be inserted into the generated
Handel-C.

Code entered into the "Additional pre-processor directives" box will be inserted at the top of
the generated file. This can be used to modify the clock rate or include other header files.

Code entered into the "Additional declarations" box will be inserted in the declarations
section of the main() function. This can be used to declare additional variables, which can
then be provided as parameters to filters.

PixelStreams Manual

www.celoxica.com Page 38

Code entered into the "Additional code" box will inserted after the generated filter
instantiations. This can be used to add per-frame behaviour, or other non-stream
processing.

6.6 Options

The PixelStreams options dialog, accessible under Tools > Options, sets global values and
settings for the PixelStreams GUI. The dialog has the one tab, which allows the library of
filters to be modified and added to.

Filters tab

If you have added or changed functionality in the PixelStreams library, is it possible to add
or change the available filter types within the PixelStreams GUI.

Filter, stream and parameter names, as well as filter categories and parameter defaults can
all be edited in place by first selecting the appropriate line and then clicking a second time
on the text.

New filters can be added with the "Add Filter" button, input and output streams and
parameters are added to the filters similarly. Stream and parameter ordering can be
changed with the "Move Up" and "Move Down" buttons. All selectable items can be removed
with the "Delete Item" button.

 Care must be taken when changing values on the filters tab. The filters refer
to macros that are supplied with the PixelStreams library. The addition of filters

PixelStreams Manual

www.celoxica.com Page 39

or ports must only be done if the PixelStreams library has also been altered to
reflect these changes.

At this time, the GUI does not support adding or removing heuristics from filter blocks.

The complete library is saved in a file named pxs_filters_user.xml in the startup directory if the
may be deleted, in which case the original pxs_filters.xml will
 the filter library will be lost.

The GUI is supplied with a number of examples, in the subdirectories under
follows:

: shows use of custom code and the PxsConsole() overlay.

And the e introductory tutorial (in order):

TestCard

erge

• TVIn

• TVInFIFO

• Sobel

GUI. If this becomes corrupted, it
be used. However, all changes to

6.7 GUI examples

PDKInstallDir\Examples\PixelStream\PixelStreamsGUI. These are as

• HelloWorld

following examples based on th

• TestCard

• Inverted

• Overlay

• SplitM

• Rotate

• VGAIn

PixelStreams Manual

www.celoxica.com Page 40

7 Standard filters
The PixelStreams library contains a large number of standard filters, in the following
categories:

• Arithmetic (1-op)

• Arithmetic (2-op)

• Arithmetic (Scalar)

• Clipping

• Converters

• Convolutions

• Coordinate transforms

• Flow control

• Framebuffers

• Image analysis

• Look-Up-Tables (LUTs)

• Morphology

• Noise generators

• Plotters

• Sync generators

• Video I/O

• Video generators

• Video overlays

PixelStreams Manual

www.celoxica.com Page 41

7.1 Arithmetic (1-op)

1-op arithmetic filters are those that transform the pixel values of a single input stream into
a single output stream, according to some transfer function.

• PxsAbs: absolute value

• PxsInvert: inversion

• PxsNegate: negation

• PxsNot: bitwise not

PixelStreams Manual

www.celoxica.com Page 42

7.1.1 PxsAbs: absolute value

#include "pxs.hch"
macro proc PxsAbs (In, Out);

Input Streams

In: Must contain pixels of type PXS_MONO_S16.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Outputs the absolute value of the input pixel values.

Example

Used internally by the PxsSobel() filter.

PixelStreams Manual

www.celoxica.com Page 43

7.1.2 PxsInvert: inversion

#include "pxs.hch"
macro proc PxsInvert (In, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Inverts the stream with respect to the white value, i.e. output value is (255 - input value).
This is identical to PxsNot() for every pixel type except PXS_MONO_S16.

Example

See the "GUI" example.

PixelStreams Manual

www.celoxica.com Page 44

7.1.3 PxsNegate: negation

#include "pxs.hch"
macro proc PxsNegate (In, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Negates the stream, i.e. output value is -(input value).

PixelStreams Manual

www.celoxica.com Page 45

7.1.4 PxsNot: bitwise not

#include "pxs.hch"
macro proc PxsNot (In, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Performs a bitwise NOT on the pixel values.

PixelStreams Manual

www.celoxica.com Page 46

7.2 Arithmetic (2-op)

2-op arithmetic filters are those that transform the pixel values of two synchronized input
streams into a single output stream, according to some transfer function.

• PxsAdd/PxsAddSat: image addition

• PxsAnd: bitwise and

• PxsAverage: image average

• PxsBlend: image blending

• PxsMax: image maximum

• PxsMin: image minimum

• PxsMul: image multiplication

• PxsOr: bitwise or

• PxsSub/PxsSubSat: image subtraction

• PxsXor: bitwise xor

PixelStreams Manual

www.celoxica.com Page 47

7.2.1 PxsAdd/PxsAddSat: image addition

#include "pxs.hch"
macro proc PxsAdd (In0, In1, Out);
macro proc PxsAddSat (In0, In1, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Adds the pixel values of two streams together.

Subtracts the pixel values of stream In1 from the pixel values of stream In0.

The "Sat" variant include saturation to pixel value limits, avoiding overflow.

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

Example

See the "Blend" example.

PixelStreams Manual

www.celoxica.com Page 48

7.2.2 PxsAnd: bitwise and

#include "pxs.hch"
macro proc PxsAnd (In0, In1, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Perform bitwise AND on the pixel values of the two streams.

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

Example

See the "VideoGen" example.

PixelStreams Manual

www.celoxica.com Page 49

7.2.3 PxsAverage: image average

#include "pxs.hch"
macro proc PxsAverage (In0, In1, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Generate the average pixel value of two streams (rounding down).

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

PixelStreams Manual

www.celoxica.com Page 50

7.2.4 PxsBlend: image blending

#include "pxs.hch"
macro proc PxsBlend (In0, In1, Out, Level);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Parameters

Level: Constant or variable, of type unsigned 9

Latency

3 cycles

Haltable

No

Description

Blend two streams together to create a single output stream. The mix of the two streams is
determined by the value of Level, with 0 corresponding to the exactly In0, 256
corresponding to exactly In1, and a linear combination for values within this range.

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

Example

See the "Blend" example.

PixelStreams Manual

www.celoxica.com Page 51

7.2.5 PxsMax: image maximum

#include "pxs.hch"
macro proc PxsMax (In0, In1, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Select the maximum of the pixel values of the two streams.

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

Example

See the "Blend" example.

PixelStreams Manual

www.celoxica.com Page 52

7.2.6 PxsMin: image minimum

#include "pxs.hch"
macro proc PxsMin (In0, In1, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Select the minimum of the pixel values of the two streams.

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

Example

See the "Blend" example.

PixelStreams Manual

www.celoxica.com Page 53

7.2.7 PxsMul: image multiplication

#include "pxs.hch"
macro proc PxsMul (In0, In1, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Multiply the pixel values of two streams.

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

PixelStreams Manual

www.celoxica.com Page 54

7.2.8 PxsOr: bitwise or

#include "pxs.hch"
macro proc PxsOr (In0, In1, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Perform bitwise OR on the pixel values of the two streams.

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

PixelStreams Manual

www.celoxica.com Page 55

7.2.9 PxsSub/PxsSubSat: image subtraction

#include "pxs.hch"
macro proc PxsSub (In0, In1, Out);
macro proc PxsSubSat (In0, In1, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Subtracts the pixel values of stream In1 from the pixel values of stream In0.

The "Sat" variant includes saturation to pixel value limits, avoiding overflow.

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

Example

See the "Blend" example.

PixelStreams Manual

www.celoxica.com Page 56

7.2.10 PxsXor: bitwise xor

#include "pxs.hch"
macro proc PxsXor (In0, In1, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Perform bitwise XOR on the pixel values of the two streams.

The output stream contains exactly the same sync and coordinate information as In0. In0
and In1 should be synchronized, i.e. they should originate from the same source and have
the same latency. This can be achieved using a PxsSynchronise() filter. If the output
stream is halted, both input streams are halted.

PixelStreams Manual

www.celoxica.com Page 57

7.3 Arithmetic (Scalar)

Scalar arithmetic filters are those that transform the pixel values of a single input stream
into a single output stream, according to some transfer function involving a scalar
parameter (which may be a variable or a constant).

• PxsSaturate: saturate levels

• PxsScalar*: scalar arithmetic

PixelStreams Manual

www.celoxica.com Page 58

7.3.1 PxsSaturate: saturate levels

#include "pxs.hch"
macro proc PxsSaturate (In, Out, Lower, Upper);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Parameters

Lower/Upper: Constant or variable, of the same type as the pixel component of In.

Latency

1 cycle

Haltable

No

Description

Limits the pixel values to the range Lower .. Upper (inclusive), clamping values outside this
range to the appropriate limit.

PixelStreams Manual

www.celoxica.com Page 59

7.3.2 PxsScalar*: scalar arithmetic

#include "pxs.hch"
macro proc PxsScalarAdd (In, Out, Scalar);
macro proc PxsScalarAdd3 (In, Out, Scalar0, Scalar1, Scalar2);
macro proc PxsScalarAddSat (In, Out, Scalar);
macro proc PxsScalarAddSat3 (In, Out, Scalar0, Scalar1, Scalar2);
macro proc PxsScalarSub (In, Out, Scalar);
macro proc PxsScalarSub3 (In, Out, Scalar0, Scalar1, Scalar2);
macro proc PxsScalarSubSat (In, Out, Scalar);
macro proc PxsScalarSubSat3 (In, Out, Scalar0, Scalar1, Scalar2);
macro proc PxsScalarMul (In, Out, Scalar);
macro proc PxsScalarDiv (In, Out, Scalar);
macro proc PxsScalarLeftShift (In, Out, ShiftBits);
macro proc PxsScalarRightShift (In, Out, ShiftBits);

Input Streams

In: Must contain pixels.

Output Streams

Out: Must be compatible with In.

Parameters

Scalar/Scalar0/Scalar1/Scalar2: Constant or variable, of the same type as the pixel
component of In.

ShiftBits: Constant or variable, type dependent on pixel type of In: unsigned 1
(PXS_MONO_U1), unsigned 4 (PXS_MONO_U8, PXS_RGB_U8, PXS_YCbCr_U8), unsigned 5
(PXS_MONO_S16).

Latency

1 cycle

Haltable

No

Description

Perform scalar arithmetic on the input stream.

PxsScalarAdd*() adds to the pixel values of the input stream.

PxsScalarSub*() subtracts from the pixel values of the input stream.

The "3" variants have independent scalar values for each of the three channels. These apply
only to PXS_RGB_U8 and PXS_YCbCr_U8.

PixelStreams Manual

www.celoxica.com Page 60

The "Sat" variants include saturation to pixel value limits, avoiding overflow.

PxsScalarMul() multiplies the pixel values of the input stream.

PxsScalarDiv() divides the pixel values of the input stream.

PxsScalarLeftShift() shifts the pixel values of the input stream left by a number of bits
(i.e. multiplies them by 2^ShiftBits).

PxsScalarRightShift() shifts the pixel values of the input stream right by a number of
bits (i.e. divides them by 2^ShiftBits).

Example

See the "Convolution" example.

PixelStreams Manual

www.celoxica.com Page 61

7.4 Clipping

Clipping filters are those that affect the active region of an image, either reducing it
(clipping) or increasing it (unclipping).

• PxsClipBorder: clip to remove a border

• PxsClipCircle: clip to a circle

• PxsClipStream: clip to a binary stream

• PxsUnclip: reset active region

• PxsUnclipAndBlank: blank out clipped regions

PixelStreams Manual

www.celoxica.com Page 62

7.4.1 PxsClipBorder: clip to remove a border

#include "pxs.hch"
macro proc PxsClipBorder (In, Out, Width, Height, Border);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Must be compatible with In.

Parameters

Width/Height/Border: Constant or variable, of type signed 16

Latency

2 cycles

Haltable

No

Description

Clip the active region of a stream to a rectangle. The rectangle is the area (Border, Border)
to ((Width - 1) - Border, (Height - 1) - Border) inclusive. The output active region is the
intersection of the rectangle with the active region of the input stream.

Example

See the "Clip" example.

PixelStreams Manual

www.celoxica.com Page 63

7.4.2 PxsClipCircle: clip to a circle

#include "pxs.hch"
macro proc PxsClipCircle (In, Out, X, Y, Radius);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Must be compatible with In.

Parameters

X/Y/Radius: Constant or variable, of type signed 16

Latency

4 cycles

Haltable

No

Description

Clip the active region of a stream to a circle. The circle is centered on (X, Y) and has a radius
of Radius pixels. The output active region is the intersection of the circle with the active
region of the input stream.

Example

See the "Clip" example.

PixelStreams Manual

www.celoxica.com Page 64

7.4.3 PxsClipRectangle: clip to a rectangle

#include "pxs.hch"
macro proc PxsClipRectangle (In, Out, X0, Y0, X1, Y1);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Must be compatible with In.

Parameters

X0/Y0/X1/Y1: Constant or variable, of type signed 16

Latency

2 cycles

Haltable

No

Description

Clip the active region of a stream to a rectangle. The rectangle is the area (X0, Y0) to (X1,
Y1) inclusive. (X0, Y0) should be the top-left coordinates, and (X1, Y1) the bottom-right
coordinates. The output active region is the intersection of the rectangle with the active
region of the input stream.

Example

See the "FrameBuffer" example.

PixelStreams Manual

www.celoxica.com Page 65

7.4.4 PxsClipStream: clip to a binary stream

#include "pxs.hch"
macro proc PxsClipStream (In, Out, Control);

Input Streams

In: All stream Types.

Control: Must contain pixels of type PXS_MONO_U1.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Clip the active region of a stream to the pixel value of another stream. The output active
region is the intersection of area where the Control stream has a pixel value of 1 and the
active region of the input stream.

In and Control should be synchronized, i.e. they should originate from the same source
and have the same latency. This can be achieved using a PxsSynchronise() filter. If the
output stream is halted, both input streams are halted.

Example

See the "Clip" example.

PixelStreams Manual

www.celoxica.com Page 66

7.4.5 PxsUnclip: reset active region

#include "pxs.hch"
macro proc PxsUnclip (In, Out);

Input Streams

In: Must contain sync pulses.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Set the active region of a stream to the visible area of the stream. Pixels in the clipped
region may have been corrupted by upstream filters, these will now become visible. To set
these pixels to black, use PxsUnclipAndBlank().

PixelStreams Manual

www.celoxica.com Page 67

7.4.6 PxsUnclipAndBlank: blank out clipped regions

#include "pxs.hch"
macro proc PxsUnclipAndBlank (In, Out);

Input Streams

In: Must contain sync pulses.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Set the active region of a stream to the visible area of the stream. Pixels in the previously
clipped region are set to black.

Example

See the "SelectLUT" example.

PixelStreams Manual

www.celoxica.com Page 68

7.5 Converters

Conversion filters are those that transform streams of one pixel type to streams of another
(or perform some similar operation such as dithering).

• PxsBitSlice: bit slice extraction

• PxsCombineRGB: create an RGB stream

• PxsConvert: color-space conversion

• PxsExtractRGB: split an RGB stream

• PxsOrderedDither/PxsOrderedDither3: ordered dithering

• PxsThreshold: binary threshold

PixelStreams Manual

www.celoxica.com Page 69

7.5.1 PxsBitSlice: bit slice extraction

#include "pxs.hch"
macro proc PxsBitSlice (In, Out, Bit);

Input Streams

In: Must contain pixels of type PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Sync and coord types must be compatible with In. Must contain pixels of type
PXS_MONO_U1.

Parameters

Bit: Constant or variable, of type unsigned 3 (for inputs of type PXS_MONO_U8), or unsigned
4 (for inputs of type PXS_MONO_S16).

Latency

1 cycle

Haltable

No

Description

Extract the specified bit from the two's-complement representation of the input stream and
generate a binary stream from it.

PixelStreams Manual

www.celoxica.com Page 70

7.5.2 PxsCombineRGB: create an RGB stream

#include "pxs.hch"
macro proc PxsCombineRGB (InR, InG, InB, Out);

Input Streams

InR/InG/InB: Must contain pixels of type PXS_MONO_U8.

Output Streams

Out: Sync and coord types must be compatible with InR. Must contain pixels of type
PXS_RGB_U8.

Latency

1 cycle

Haltable

No

Description

Combine three independent R, G, B channel streams into a single RGB stream. The output
stream contains exactly the same sync and coordinate information as InR. InR, InG and InB
should be synchronized, i.e. they should originate from the same source and have the same
latency. This can be achieved using PxsSynchronise() filters. If the output stream is
halted, all input streams are halted.

Example

See the "Stereo" example.

PixelStreams Manual

www.celoxica.com Page 71

7.5.3 PxsConvert: color-space conversion

#include "pxs.hch"
macro proc PxsConvert (In, Out);

Input Streams

In: Must contain pixels.

Output Streams

Out: Sync and coord types must be compatible with In. Must contain pixels, and these must
be a different pixel type to In.

Latency

between 1 and 4, depending on the conversion.

Haltable

No

Description

Convert one pixel type to another. All non-empty pixel types can be converted to all others,
however most conversions lose some information.

Ranges of pixel types (see page 14) and Conversions between pixel types (see page
15) provide more information regarding the conversions between different color spaces.

Example

See the "FrameBuffer" example.

PixelStreams Manual

www.celoxica.com Page 72

7.5.4 PxsExtractRGB: split an RGB stream

#include "pxs.hch"
macro proc PxsExtractRGB (In, OutR, OutG, OutB);

Input Streams

In: Must contain pixels of type PXS_RGB_U8.

Output Streams

OutR/OutG/OutB: Sync and coord types must be compatible with In. Must contain pixels of
type PXS_MONO_U8.

Latency

1 cycle

Haltable

No

Description

Split an RGB stream into independent R, G and B channel streams. The output streams
contain exactly the same sync and coordinate information as the input streams. If any
output stream is halted, the input stream is halted.

Example

See the "Noise" example.

PixelStreams Manual

www.celoxica.com Page 73

7.5.5 PxsOrderedDither/PxsOrderedDither3: ordered dithering

#include "pxs.hch"
macro proc PxsOrderedDither (In, Out, Bits);
macro proc PxsOrderedDither3 (In, Out, BitsR, BitsG, BitsB);

Input Streams

In: Must contain synchronous coordinates. Must contain pixels of type PXS_MONO_U8
(PxsOrderedDither only), PXS_RGB_U8 or PXS_YCbCr_U8.

Output Streams

Out: Must be compatible with In.

Parameters

Bits/BitsR/BitsG/BitsB: Constant ranging from 1 to 8 inclusive.

Latency

1 cycle

Haltable

No

Description

Dither the input video to a given number of significant bits. Standard ordered dithering is
used. The output values are padded such that the full output range is used. For example,
settings Bits to 1 will dither a PXS_MONO_U8 source to pure black and white. Setting bits to
6 will dither a PXS_RGB_U8 source to a format suitable for driving an 18-bit display (such as
some types of LCD).

a Note that when dithering natural images, it is useful to apply gamm
correction before dithering (since a 50% black / 50% white image will
typically display much brighter than a 50% grey image). This is
demonstrated by the "DitherVideo" example.

Example

See the "Dither" and "DitherVideo" examples.

PixelStreams Manual

www.celoxica.com Page 74

7.5.6 PxsThreshold: binary threshold

#include "pxs.hch"
macro proc PxsThreshold (In, Out, Lower, Upper);

Input Streams

In: Must contain pixels of type PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Sync and coord types must be compatible with In. Must contain pixels of type
PXS_MONO_U1.

Parameters

Lower/Upper: Constant or variable, of the same type as the pixel component of In.

Latency

1 cycle

Haltable

No

Description

Threshold the input stream. Pixel values within the range Lower .. Upper (inclusive) are
transformed to white, all other values are transformed to black.

Example

See the "LabelBlobs" example.

PixelStreams Manual

www.celoxica.com Page 75

7.6 Convolutions

Convolutions are filters where the output pixel value is dependent on a function of the
region around the input pixel.

• PxsBlur3x3: blurring

• PxsBlur5x5: heavy blurring

• PxsConvolution3x3, PxsConvolutionDual3x3: arbitrary 3x3 convolutions

• PxsLaplacian3x3: high-pass filter

• PxsMedianFilter: median filtering

• PxsSharpen3x3: sharpening

• PxsSobel: edge detection

PixelStreams Manual

www.celoxica.com Page 76

7.6.1 PxsBlur3x3: blurring

#include "pxs.hch"
macro proc PxsBlur3x3 (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
either PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be either
PXS_MONO_U8 or PXS_MONO_S16.

Parameters

Width: Constant, greater than or equal to 1.

Latency

1 line and 8/9 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 Gaussian blur on the input stream. Width is the maximum active width of the
input stream in pixels. The stream is convolved with the coefficients:

1 2 1

2 4 2

1 2 1
The result is then divided by 16.

A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

PixelStreams Manual

www.celoxica.com Page 77

7.6.2 PxsBlur5x5: heavy blurring

#include "pxs.hch"
macro proc PxsBlur5x5 (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
either PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be either
PXS_MONO_U8 or PXS_MONO_S16.

Parameters

Width: Constant, greater than or equal to 1.

Latency

1 line and 10/11 cycles (subject to change)

Haltable

No

Description

Perform a 5x5 Gaussian blur on the input stream. Width is the maximum active width of the
input stream in pixels. The stream is convolved with the coefficients:

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1
The result is then divided by 256.

A two pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

PixelStreams Manual

www.celoxica.com Page 78

7.6.3 PxsConvolution3x3, PxsConvolutionDual3x3: arbitrary 3x3
convolutions

#include "pxs.hch"
macro proc PxsConvolution3x3 (In, Out, Width, A);
macro proc PxsConvolutionDual3x3 (In, OutA, OutB, Width, A, B);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
either PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out/OutA/OutB: Sync and coord types must be compatible with In. Must contain pixels of
type PXS_MONO_S16.

Parameters

Width: Constant, greater than or equal to 1.

A/B: Constant list-of-lists, or variable array (see description).

Latency

1 line and 7 cycles (subject to change)

Haltable

No

Description

Perform an arbitrary 3x3 convolution on the input stream. Width is the maximum active
width of the input stream in pixels. A is a 3x3 matrix of coefficients. For constants, these
should be passed as a "list-of-lists" (see the "Laplacian5x5" example). If the coefficients are
to be dynamically changed, A should be an array of 3x3 signed 16-bit integers (see the
"Convolution" example). The multiplication and summation stages are done at signed
16-bit precision, so care should be taken to avoid overflow. No truncation or rounding is
performed. A single pixel layer bordering the active region will contain invalid results (since
the calculation will involve pixels outside the active region).

PxsConvolutionDual3x3() performs two convolutions in parallel on the same input
stream. This filter is more efficient than two independent convolutions as it can share line
buffer logic (and in some case tile RAMs more efficiently).

Example

See the "Convolution" example.

PixelStreams Manual

www.celoxica.com Page 79

7.6.4 PxsConvolution5x5: arbitrary 5x5 convolution

#include "pxs.hch"
macro proc PxsConvolution5x5 (In, Out, Width, A);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
either PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Sync and coord types must be compatible with In. Must contain pixels of type
PXS_MONO_S16.

Parameters

Width: Constant, greater than or equal to 1.

Latency

2 lines and 9 cycles (subject to change)

Haltable

No

Description

Perform an arbitrary 5x5 convolution on the input stream. Width is the maximum active
width of the input stream in pixels. A is a 5x5 matrix of coefficients. For constants, these
should be passed as a "list-of-lists" (see the "Laplacian5x5" example). If the coefficients are
to be dynamically changed, A should be an array of 5x5 signed 16-bit integers (see the
"Convolution" example). The multiplication and summation stages are done at signed
16-bit precision, so care should be taken to avoid overflow. No truncation or rounding is
performed. A two pixel layer bordering the active region will contain invalid results (since
the calculation will involve pixels outside the active region).

Example

See the "Laplacian5x5" example.

PixelStreams Manual

www.celoxica.com Page 80

7.6.5 PxsLaplacian3x3: high-pass filter

#include "pxs.hch"
macro proc PxsLaplacian3x3 (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
either PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be PXS_MONO_S16.

Parameters

Width: Constant, greater than or equal to 1.

Latency

1 line and 7/8 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 Laplacian (high pass filter) on the input stream. Width is the maximum active
width of the input stream in pixels. The stream is convolved with the coefficients:

1 1 1

1 -8 1

1 1 1
The output value varies either side of 0, it can be offset by 128 (using PxsScalarAddSat())
for visualization purposes.

A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

PixelStreams Manual

www.celoxica.com Page 81

7.6.6 PxsMedianFilter: median filtering

#include "pxs.hch"
macro proc PxsMedianFilter (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
either PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Must be compatible with In.

Parameters

Width: Constant, greater than or equal to 1.

Latency

1 line and 12 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 median filter on the input stream. Width is the maximum active width of the
input stream in pixels. The output value is the median of the 9 input values in the 3x3
window around the central pixel. This filter is suitable for removing impulse noise.

A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

Example

See the "MedianFilter" example.

PixelStreams Manual

www.celoxica.com Page 82

7.6.7 PxsSharpen3x3: sharpening

#include "pxs.hch"
macro proc PxsSharpen3x3 (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
either PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be either
PXS_MONO_U8 or PXS_MONO_S16.

Parameters

Width: Constant, greater than or equal to 1.

Latency

1 line and 7/8 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 sharpen (unsharp mask) on the input stream. Width is the maximum active
width of the input stream in pixels. The stream is convolved with the coefficients:

-1 -1 -1

-1 9 -1

-1 -1 -1
A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

ut image, Note that this filter typically produces a very noisy outp
more advanced adaptive techniques are typically recommended.

PixelStreams Manual

www.celoxica.com Page 83

7.6.8 PxsSobel: edge detection

#include "pxs.hch"
macro proc PxsSobel (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
either PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be either
PXS_MONO_U8 or PXS_MONO_S16.

Parameters

Width: Constant, greater than or equal to 1.

Latency

1 line and 9/10 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 Sobel edge detection on the input stream. Width is the maximum active
width of the input stream in pixels. The stream is convolved with the coefficients:

-1 -2 -1

0 0 0

1 2 1
to compute the vertical gradient, and coefficients

-1 0 1

-2 0 2

-1 0 1
to compute the horizontal gradient. The result is the sum of the absolute value of these two
gradients, and is proportional to the smoothed edge intensity at a given point.

A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

Example

See the "EdgeDetect" example.

PixelStreams Manual

www.celoxica.com Page 84

PixelStreams Manual

www.celoxica.com Page 85

7.7 Coordinate transforms

Coordinate transform filters are those that affect the coordinate component of a stream in
some way.

• PxsAffineTransform: affine transformation

• PxsDisplace: coordinate displacement

• PxsDynamicRotate: coordinate rotation

• PxsRegenerateCoord: recreate synchronous coordinates

• PxsScale: coordinate scaling

• PxsScalePower2: simple coordinate scaling

• PxsTranslate: coordinate shifting

PixelStreams Manual

www.celoxica.com Page 86

7.7.1 PxsAffineTransform: affine transformation

#include "pxs.hch"
macro proc PxsAffineTransform (In, Out, A, IntBits, FracBits);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and pixel type must be compatible with In. Coord type must be
PXS_COORD_ASYNCHRONOUS.

Parameters

A: Constant list-of-lists, or variable array.

IntBits: Constant, greater than or equal to zero.

FracBits: Constant, greater than or equal to zero.

Latency

3 cycles

Haltable

No

Description

Perform an affine transformation on the input coordinates. The parameter A must be either
an 3x2 array or a list of constants of the same dimension. The transformation performed is:

 X' = (X . A[0][0]) + (Y . A[0][1]) + A[0][2];
 Y' = (X . A[1][0]) + (Y . A[1][1]) + A[1][2];

The values in A are in signed fixed point, arranged as (IntBits.FracBits). For purely
integer transformations, FracBits should therefore be zero.

Example

See the "Affine" example.

PixelStreams Manual

www.celoxica.com Page 87

7.7.2 PxsDisplace: coordinate displacement

#include "pxs.hch"
macro proc PxsDisplace (In, DeltaXIn, DeltaYIn, Out);

Input Streams

In: Must contain coordinates.

DeltaXIn: Must contain pixels of type PXS_MONO_S16.

DeltaYIn: Must contain pixels of type PXS_MONO_S16.

Output Streams

Out: Sync and pixel type must be compatible with In. Coord type must be
PXS_COORD_ASYNCHRONOUS.

Latency

1 cycle

Haltable

No

Description

Displace (translate) the coordinates of a stream according to the pixel values of two further
streams. This is typically used to shift a coordinate stream before using it to lookup from a
framebuffer.

In, DeltaXIn and DeltaYIn should be synchronized, i.e. they should originate from the
same source and have the same latency. This can be achieved using a PxsSynchronise()
filter. If the output stream is halted, all three input streams are halted.

Example

See the "PerlinRipple" example.

PixelStreams Manual

www.celoxica.com Page 88

7.7.3 PxsDynamicRotate: coordinate rotation

#include "pxs.hch"
macro proc PxsDynamicRotate (In, Out, Angle);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and pixel type must be compatible with In. Coord type must be
PXS_COORD_ASYNCHRONOUS.

Parameters

Angle: Constant or variable, of type unsigned 11

Latency

3 cycles

Haltable

No

Description

Rotate the coordinates of a stream about (0, 0). The coordinates are rotated clockwise by
an angle of ((pi * Angle) / 1024) radians.

Example

See the "Rotate" example.

PixelStreams Manual

www.celoxica.com Page 89

7.7.4 PxsRegenerateCoord: recreate synchronous coordinates

#include "pxs.hch"

macro proc PxsRegenerateCoord (In, Out);

Input Streams

In: Must contain sync.

Output Streams

Out: Sync type must be compatible with In. Pixel type must be same as In.

Latency

1 cycle

Haltable

No

Description

Regenerate synchronous coordinates from sync pulses. This is typically useful in two
circumstances. Firstly, if the coordinate stream has been transformed (for example, to do a
rotated look up in a framebuffer), but the user then wishes to add an untransformed overlay
(such as a console). Secondly, when the coordinate stream has been deliberately discarded
to reduce the size of preceding filters (such as FIFOs), but is needed for some later process.

Example

See the "DitherVideo" example.

PixelStreams Manual

www.celoxica.com Page 90

7.7.5 PxsScale: coordinate scaling

#include "pxs.hch"
macro proc PxsScale (In, Out, InWidth, InHeight, OutWidth, OutHeight);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and pixel type must be compatible with In. Coord type must be
PXS_COORD_ASYNCHRONOUS.

Parameters

InWidth/InHeight/OutWidth/OutHeight: Constant or variable, of type signed 16

Latency

3 cycles

Haltable

No

Description

Perform a simple scaling of coordinates. This is typically used to scale a coordinate stream
before using it to lookup from a framebuffer. The scaling is such that:

• (0, 0) at the input maps to (0, 0) at the output.

• (OutWidth, OutHeight) at the input maps to (InWidth, InHeight) at the output.

This is the reciprocal of what might be imagined, but is designed for framebuffer lookups
where (OutWidth, OutHeight) is the size of the output screen and (InWidth, InHeight) is
the size of the input image.

 and OutHeight are not constants, the hardware will be If OutWidth
both large and slow.

Example

See the "Scale" example.

PixelStreams Manual

www.celoxica.com Page 91

7.7.6 PxsScalePower2: simple coordinate scaling

#include "pxs.hch"
macro proc PxsScalePower2 (In, Out, Power);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and pixel type must be compatible with In. Coord type must be
PXS_COORD_ASYNCHRONOUS.

Parameters

Power: Constant or variable, of type unsigned 5

Latency

1 cycle

Haltable

No

Description

Perform simple power-of-two scaling of coordinates. This is typically used to scale a
coordinate stream before using it to lookup from a framebuffer. The coordinate values are
both divided by 2^Power.

Example

See the "Noise" example.

PixelStreams Manual

www.celoxica.com Page 92

7.7.7 PxsTranslate: coordinate shifting

#include "pxs.hch"
macro proc PxsTranslate (In, Out, DeltaX, DeltaY);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and pixel type must be compatible with In. Coord type must be
PXS_COORD_ASYNCHRONOUS.

Parameters

DeltaX/DeltaY: Constant or variable, of type signed 16

Latency

1 cycle

Haltable

No

Description

Perform horizontal and vertical translation of coordinates. This is typically used to shift a
coordinate stream before using it to lookup from a framebuffer. The coordinate values are
both shifted by (DeltaX, DeltaY) pixels. Positive values of DeltaX and DeltaY will result in
a leftwards and upwards translation of a looked up image.

Example

See the "Scale" example.

PixelStreams Manual

www.celoxica.com Page 93

7.8 Flow control

Flow control filters are those that affect only the flow of data through streams, and not their
contents.

• PxsDelay: delaying streams

• PxsFIFO: first-in-first-out buffering of streams

• PxsJoin: join two intermittent streams

• PxsLineBuffer/PxsDualLineBuffer: line buffering

• PxsMux*: multiplexing streams

• PxsMux2Stream: multiplexing controlled by streams

• PxsNonReturnValve: inhibiting flow control

• PxsRateLimiter: limit stream data rate

• PxsSend/PxsReceive: passing streams over channels

• PxsSplit*: splitting streams

• PxsSynchronise: synchronize skewed streams

• PxsValve: controlling streams

PixelStreams Manual

www.celoxica.com Page 94

7.8.1 PxsDelay: delaying streams

#include "pxs.hch"
macro proc PxsDelay (In, Out);

Input Streams

In: All stream types

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Delay the input stream by a single cycle. Useful in balancing latency when combining
previously split streams.

Example

See the "GUI" example.

PixelStreams Manual

www.celoxica.com Page 95

7.8.2 PxsFIFO: first-in-first-out buffering of streams

#include "pxs.hch"
macro proc PxsFIFO (In, Out, Length);

Input Streams

In: All stream types.

Output Streams

Out: Must be compatible with In.

Parameters

Length: Constant, maximum number of elements in the FIFO + 1

Latency

Variable

Haltable

Yes

Description

Implement a simple FIFO (first-in-first-out) of valid pixels. If the output of the FIFO is
halted, the next cycle of output is guaranteed not to contain a valid pixel.

The input stream is halted when the FIFO becomes at least half full. Therefore, to halt a
chain of filters of total latency N without losing data, Length should be at least (2 * N) + 1.
This assumes that the ultimate source of the chain is itself haltable.

Pixels will be lost if the FIFO overflows.

The FIFO will buffer all components in a stream, which may in some cases use an
undesirable amount of RAM. For example, buffering a stream that contains coordinates will
require (Length * 32) bits of RAM over the same stream without coordinates. To avoid this
overhead, it is sometimes possible to strip the coordinates from a synchronous stream (by
declaring it as PXS_*_N rather than PXS_*_S), and regenerate them afterwards using
PxsRegenerateCoord().

Example

See the "FrameBuffer" example.

PixelStreams Manual

www.celoxica.com Page 96

7.8.3 PxsJoin: join two intermittent streams

#include "pxs.hch"
macro proc PxsJoin (In0, In1, Out);

Input Streams

In0/In1: All stream types.

Output Streams

Out: Must be compatible with In0 and In1.

Latency

1 or 2 cycles (see below)

Haltable

No

Description

Join two intermittent streams together to a single output stream. Valid pixels on In0 are
passed to Out with two cycles of latency, and stream In1 is halted. If on any given cycle,
In0 does not contain valid pixels, then pixels on input In1 are passed to Out with one cycle
of latency.

This filter is useful for combining two slow-running streams (for example, two TV inputs can
be combined in this way if the clock rate is above 27MHz). Because input In1 can be
frequently halted, a FIFO is typically used on this input.

Example

See the "Join" example.

PixelStreams Manual

www.celoxica.com Page 97

7.8.4 PxsLineBuffer/PxsDualLineBuffer: line buffering

#include "pxs.hch"
macro proc PxsLineBuffer (In, Out, Width);
macro proc PxsDualLineBuffer (In0, In1, Out0, Out1, Width);

Input Streams

In/In0/In1: Must contain synchronous coordinates and progressive sync signals.

Output Streams

Out/Out0/Out1: Must be compatible with corresponding input.

Parameters

Width: Constant, equal to the horizontal width in pixels of the visible area.

Latency

1 line + 1 cycle

Haltable

No

Description

Delay a stream by a single line. Only the pixel and active data are buffered, the coordinates
and sync signals are reconstructed, to minimize on-chip RAM usage.

PxsDualLineBuffer() allows two lines to be buffered at a time. This is typically used to
construct 3x3 (or greater) convolutions. Packing two lines into a single RAM optimizes RAM
usage.

PixelStreams Manual

www.celoxica.com Page 98

7.8.5 PxsMux*: multiplexing streams

#include "pxs.hch"
typedef enum
{
 PXS_NONBLOCK,
 PXS_BLOCK
}
PxsBlockingMode;
macro proc PxsMux2 (In0, In1, Out, Control, BlockingMode);
macro proc PxsMux3 (In0, In1, In2, Out, Control, BlockingMode);
macro proc PxsMux4 (In0, In1, In2, In3, Out, Control, BlockingMode);

Input Streams

In0/In1/In2/In3: All stream types.

Output Streams

Out: Must be compatible with all inputs.

Parameters

Control An unsigned int, of width 1 (PxsMux2) or 2 (PxsMux3 or PxsMux4).

BlockingMode Constant or variable, of type PxsBlockingMode.

Latency

1 cycle

Haltable

No

Description

Dynamically multiplex two, three or four input streams to a single output stream. The
variable Control selects which input is active at any given time.

In blocking mode (BlockingMode set to PXS_BLOCK), when any given input is selected, all
other inputs are halted. If the input streams are the result of an upstream PxsSplit filter
then the original source will be halted, which will in turn cause the active input to be halted.

In non-blocking mode (BlockingMode set to PXS_NONBLOCK), inputs are only halted when
the output is halted.

Example

See the "Blend" example.

PixelStreams Manual

www.celoxica.com Page 99

7.8.6 PxsMux2Stream: multiplexing controlled by streams

#include "pxs.hch"
macro proc PxsMux2Stream (In0, In1, ControlStream, Out);

Input Streams

In0/In1: All stream types.

ControlStream: A stream of pixel type PXS_MONO_U1.

Output Streams

Out: Must be compatible with In0 and In1.

Latency

1 cycle

Haltable

No

Description

Dynamically multiple two input streams to a single output stream, based on the input pixel
value of a third stream (ControlStream). This is useful for multiplexing on a pixel-by-pixel
basis. When the pixel value of ControlStream is 0, data at In0 are copied to Out, otherwise
data at In1 are copied to Out.

In blocking mode (BlockingMode set to PXS_BLOCK), when any given input is selected, all
other inputs are halted. If the input streams are the result of an upstream PxsSplit filter
then the original source will be halted, which will in turn cause the active input to be halted.

In non-blocking mode (BlockingMode set to PXS_NONBLOCK), inputs are only halted when
the output is halted.

PixelStreams Manual

www.celoxica.com Page 100

7.8.7 PxsNonReturnValve: inhibiting flow control

#include "pxs.hch"
macro proc PxsNonReturnValve (In, Out);

Input Streams

In: All stream types.

Output Streams

Out: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

The non-return valve prevents the upstream halt flag from being propagated from stream
Out to stream In. This can be used when splitting streams to prevent one branch of the split
from blocking the source.

PixelStreams Manual

www.celoxica.com Page 101

7.8.8 PxsRateLimiter: limit stream data rate

#include "pxs.hch"
macro proc PxsRateLimiter (In, Out, Cycles);

Input Streams

In: All stream types.

Output Streams

Out: Must be compatible with In.

Parameters

Cycles: Constant, greater than one.

Latency

1 cycle

Haltable

No

Description

Implement rate limiting on the input stream by controlling the halt flag. The input stream is
halted for all but one cycle in every Cycles cycles. Assuming the source filter can be halted,
the stream will therefore contain a maximum ratio of 1 valid pixel every Cycles pixels.

Example

See the "Join" example.

PixelStreams Manual

www.celoxica.com Page 102

7.8.9 PxsSend/PxsReceive: passing streams over channels

#include "pxs.hch"
macro proc PxsSend (In, ChanPtr);
macro proc PxsReceive (Out, ChanPtr);

Input Streams

In: All stream types.

Output Streams

Out: Must be identical to In.

Parameters

ChanPtr Pointer to a channel of type "unsigned", sufficiently wide to hold all the
components of the input stream.

Latency

N/A

Haltable

No

Description

PxsSend() serialises the contents of a stream, and sends it down a channel. If the channel
blocks, the input stream is halted. If the input stream is invalid, the channel is not sent to.

PxsReceive() receives from the channel and de-serializes it into the stream. If the output
stream is halted, the channel will block. If the channel is not received from, the output
stream is set as invalid.

These two macros should always be used as a pair. Since the only type checking available
is the width of the channel, the user must ensure that streams In and Out are of identical
(and not just compatible) types.

Typically these macros are used to pass streams across clock domains. In this situation, it
is important to use the "with { fifolength = ... }" specifier on the channel declaration
to achieve one pixel per clock cycle performance (in the slowest domain).

Example

See the "MultiDomain" example.

PixelStreams Manual

www.celoxica.com Page 103

7.8.10 PxsSplit*: splitting streams

#include "pxs.hch"
macro proc PxsSplit2 (In, Out0, Out1);
macro proc PxsSplit3 (In, Out0, Out1, Out2);
macro proc PxsSplit4 (In, Out0, Out1, Out2, Out3);

Input Streams

In: All stream types.

Output Streams

Out0/Out1/Out2/Out3: Must be compatible with In.

Latency

1 cycle

Haltable

No

Description

Split an input stream two, three or four ways. The input stream is duplicated to all output
streams. In any output stream is halted, the input stream is halted. Use a
PxsNonReturnValve() to override this behaviour on any given output.

Example

See the "VideoGen" example.

PixelStreams Manual

www.celoxica.com Page 104

7.8.11 PxsSynchronise: synchronize skewed streams

#include "pxs.hch"
macro proc PxsSynchronise (EarlyIn, LateIn, EarlyOut, LateOut, MaxSkew);

Input Streams

EarlyIn: Must contain synchronous coordinates.

LateIn: Must contain synchronous coordinates.

Output Streams

EarlyOut: Must be compatible with EarlyIn.

LateOut: Must be compatible with LateIn.

Parameters

MaxSkew: Constant, greater than or equal to 1.

Latency

1 cycle from LateIn to LateOut, variable from EarlyIn to EarlyOut

Haltable

No

Description

Synchronize two streams with differing latencies. This can be used when synchronizing a
pair of split streams which have been processed through different chains of filters, typically
as a prelude to re-combining them in some way. The stream LateIn is copied directly to
LateOut. The stream EarlyIn is delayed by a sufficient number of cycles such that it is
horizontally synchronized to LateOut, and is output as EarlyOut.

This filter obviates the need to calculate the exact latency of each side, only requiring the
user to estimate the maximum skew between them (setting MaxSkew too high will at worst
cause excess RAM usage). Because the coordinate stream is used to do the
resynchronization, both input streams must have synchronous coordinates.

Example

See the "Blend" example.

PixelStreams Manual

www.celoxica.com Page 105

7.8.12 PxsValve: controlling streams

#include "pxs.hch"
macro proc PxsValve (In, Out, Control);

Input Streams

In: All stream types.

Output Streams

Out: Must be compatible with In.

Parameters

Control: An unsigned int, of width 1.

Latency

1 cycle

Haltable

No

Description

Turn a stream on and off. When Control is set to 1, the stream flows normally. When
Control is set to 0, the input stream is halted, and no valid pixels are passed to the output
stream.

Example

See the "Reader" example.

PixelStreams Manual

www.celoxica.com Page 106

7.9 Framebuffers

Framebuffer filters are those capable of storing and reading out entire images from RAM
(normally off chip RAM).

• PxsPalPL1RAMReader: read a static image

• PxsPalPL1RAMFrameBufferDB: double-buffered framebuffer

• PxsPalPL1RAMFrameBuffer: single-buffered framebuffer

PixelStreams Manual

www.celoxica.com Page 107

7.9.1 PxsPalPL1RAMReader: read a static image

#include "pxs.hch"
macro proc PxsPalPL1RAMReader (In, Out, Width, PL1RAM, ClockRate);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and coord types must be compatible with In.

Parameters

Width: Constant, greater than or equal to 1.

PL1RAM: Handle to a PAL PL1RAM.

ClockRate: Constant, equal to the local clock rate.

Latency

4 cycles

Haltable

No

Description

Read a static image from an external PAL PL1RAM. The output stream contains pixels
looked up according to the coordinate component of the input stream. Width is the width of
the image in pixels, as stored in RAM. One pixel is stored per location in RAM, packed as the
concatenation of the pixel channels (for example, R @ G @ B). Any remaining data bits are
ignored. Since the macro calls PalPL1RAMRun() on the PL1RAM argument, any other
accesses to the RAM must run in parallel with this macro.

Example

See the "Reader" example.

PixelStreams Manual

www.celoxica.com Page 108

7.9.2 PxsPalPL1RAMFrameBufferDB: double-buffered framebuffer

#include "pxs.hch"
typedef enum
{
 PXS_BOB,
 PXS_WEAVE
}
PxsDeInterlaceMode;
macro proc PxsPalPL1RAMFrameBufferDB (In, CoordIn, Out, Width, DeInterlaceMode,
PL1RAM0, PL1RAM1, ClockRate);

Input Streams

In: Must contain coordinates.

CoordIn: Must contain coordinates.

Output Streams

Out: Sync and coord types must be compatible with CoordIn. Pixel type must be the same
as In.

Parameters

DeInterlaceMode: Constant or variable, of type PxsDeInterlaceMode.

Width: Constant, greater than or equal to 1.

PL1RAM0/PL1RAM1: Handles to two independent PAL PL1RAMs.

ClockRate: Constant, equal to the local clock rate.

Latency

4 cycles

Haltable

No

Description

Framebuffer an input stream into a pair of external PAL PL1RAMs. The output stream
contains pixels looked up according to the coordinate component of the CoordIn stream.

Width is the width of the image in pixels, as stored in RAM. One pixel is stored per location
in RAM, packed as the concatenation of the pixel channels (for example, R @ G @ B). Any
remaining data bits are ignored. Since the macro calls PalPL1RAMRun() on the PL1RAM
arguments, any other accesses to these RAMs must run in parallel with this macro.

PixelStreams Manual

www.celoxica.com Page 109

At present, only PXS_WEAVE mode is implemented by this framebuffer. The RAM banks are
swapped at the beginning of the even field of a new input frame (asynchronous to the
output). As reading and writing use independent banks of RAM, the maximum bandwidth of
the both (in pixels per second) is equal to ClockRate.

Example

See the "VGAIn" example.

PixelStreams Manual

www.celoxica.com Page 110

7.9.3 PxsPalPL1RAMFrameBuffer: single-buffered framebuffer

#include "pxs.hch"
typedef enum
{
 PXS_BOB,
 PXS_WEAVE
}
PxsDeInterlaceMode;
macro proc PxsPalPL1RAMFrameBuffer (In, CoordIn, Out, Width, DeInterlaceMode,
PL1RAM, ClockRate);

Input Streams

In: Must contain coordinates.

CoordIn: Must contain coordinates.

Output Streams

Out: Sync and coord types must be compatible with CoordIn. Pixel type must be the same
as In.

Parameters

DeInterlaceMode: Constant or variable, of type PxsDeInterlaceMode.

Width: Constant, greater than or equal to 1.

PL1RAM: Handle to a PAL PL1RAM.

ClockRate: Constant, equal to the local clock rate.

Latency

6 cycles

Haltable

No

Description

Framebuffer an input stream in an external PAL PL1RAM. The output stream contains pixels
looked up according to the coordinate component of the CoordIn stream. When the
CoordIn stream is either invalid or is outside the active region, pixels are taken from the In
stream and stored in the framebuffer. At all other times, the In stream is halted (see note
below regarding bandwidth).

Width is the width of the image in pixels, as stored in RAM. One pixel is stored per location
in RAM, packed as the concatenation of the pixel channels (for example, R @ G @ B). Any

PixelStreams Manual

www.celoxica.com Page 111

remaining data bits are ignored. Since the macro calls PalPL1RAMRun() on the PL1RAM
argument, any other accesses to the RAM must run in parallel with this macro.

Interlaced video inputs are de-interlaced according to the value of DeInterlaceMode.
PXS_BOB mode performs simple line doubling, which results in minimal interlacing artifacts
but reduced vertical resolution. This is preferred for fast moving images. PXS_WEAVE mode
interleaves the lines of each field, which gives the best vertical resolution, but generates
comb-like artifacts on moving images.

The maximum bandwidth of the framebuffer (in pixels per second) is equal to ClockRate,
as PAL PL1RAMs support exactly one read or write per cycle. As reading is given priority, the
"In" stream should normally be fed from a FIFO of suitable depth. Users should ensure there
is sufficient bandwidth available, as it is shared between reading and writing. For example,
displaying 1024*768*60Hz requires 47.2 MPixels/s of bandwidth. Writing from a CCIR-601
PAL TV input requires 720*576*(50/2) = 10.4 MPixels/s, giving a total RAM bandwidth of
57.6 MPixel/s. So at 65MHz, there is sufficient bandwidth to read a full TV stream and
display on an XGA monitor. On the other hand, displaying 640*480*60Hz requires 18.4
MPixel/s, giving a total of 28.8 MPixel/s. So at 25.175MHz, there is insufficient bandwidth
read a full TV stream and display on a VGA monitor.

In situations where this framebuffer does not have sufficient bandwidth, you should use a
PxsPALPL1RAMFrameBufferDB(), or alternatively implement a framebuffer that packs
multiple pixels into single words.

Example

See the "FrameBuffer" example.

PixelStreams Manual

www.celoxica.com Page 112

7.10 Image analysis

Image analysis filters are those concerned with analysing the contents of streams on a
per-frame basis.

• PxsAnalyse: analyse pixel values

• PxsLabelBlobs: connected component labelling

PixelStreams Manual

www.celoxica.com Page 113

7.10.1 PxsAnalyse: analyse pixel values

typedef struct PxsAnalyseHandle;
#include "pxs.hch"
macro proc PxsAnalyse (In, AnalyseHandlePtr);
macro proc PxsAnalyseAwaitUpdate (AnalyseHandlePtr);
macro expr PxsAnalyseGetNumActive (AnalyseHandlePtr);
macro expr PxsAnalyseGetSumValues (AnalyseHandlePtr);
macro expr PxsAnalyseGetMinValue (AnalyseHandlePtr);
macro expr PxsAnalyseGetMaxValue (AnalyseHandlePtr);
macro expr PxsAnalyseGetModeValue (AnalyseHandlePtr);
macro expr PxsAnalyseGetMinX (AnalyseHandlePtr);
macro expr PxsAnalyseGetMinY (AnalyseHandlePtr);
macro expr PxsAnalyseGetMaxX (AnalyseHandlePtr);
macro expr PxsAnalyseGetMaxY (AnalyseHandlePtr);
macro expr PxsAnalyseGetFrequency (AnalyseHandlePtr, Value);
macro expr PxsAnalyseGetCumulativeFrequency (AnalyseHandlePtr, Value);

Input Streams

In: Must contain coordinates and sync pulses. Must have pixel type PXS_MONO_U8.

Parameters

AnalyseHandlePtr: Pointer to a PxsAnalyseHandle structure

Value: Constant or variable of type unsigned 8

Latency

N/A

Haltable

N/A

Description

Perform simple value analysis of a stream. For each frame, the PxsAnalyse() filter gathers
information about pixels in the active region of the input stream, and stores them in a
PxsAnalyseHandle structure declared by the user. At the end of a frame, these values are
made available to the through the macros below. The user can pause processing until an
update happens by calling PxsAnalyseAwaitUpdate().

PxsAnalyseGetNumActive() returns the number of active pixels in a frame.

PxsAnalyseGetSumValues() returns the accumulated total of pixel values in a frame.
Dividing this number by PxsAnalyseGetNumActive() therefore yields a mean (average)
value.

PixelStreams Manual

www.celoxica.com Page 114

PxsAnalyseGetMinValue() returns the minimum pixel value in a frame.
PxsAnalyseGetMinX() and PxsAnalyseGetMinY() return the X and Y coordinate of one
such pixel (there may be many within a frame).

PxsAnalyseGetMaxValue() returns the maximum pixel value in a frame.
PxsAnalyseGetMaxX() and PxsAnalyseGetMaxY() return the X and Y coordinate of one
such pixel (there may be many within a frame).

PxsAnalyseGetModeValue() returns the most frequent (mode) value in a frame.

PxsAnalyseGetFrequency() returns the frequency of a given pixel value, that is to say, the
number of pixels with that value.

PxsAnalyseGetCumulativeFrequency() returns the cumulative frequency of a given pixel
value, that is to say, the number of pixels with that exact value or lower.

Example

See the "Analysis" example.

PixelStreams Manual

www.celoxica.com Page 115

7.10.2 PxsLabelBlobs: connected component labelling

typedef struct PxsBlobList;
macro proc PxsLabelBlobs (In, Out, Width, BlobListPtr, PL1RAM,
ClockRate);
macro proc PxsBlobListLock (BlobListPtr);
macro proc PxsBlobListUnlock (BlobListPtr);
macro expr PxsBlobListNumBlobs (BlobListPtr);
macro proc PxsBlobListGetArea (BlobListPtr, Blob, AreaPtr);
macro proc PxsBlobListGetSumXY (BlobListPtr, Blob, SumXPtr, SumYPtr);
macro proc PxsBlobListGetBoundingBox (BlobListPtr, Blob, X0Ptr, Y0Ptr, X1Ptr,
Y1Ptr);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
PXS_MONO_U1.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be PXS_MONO_S16.

Parameters

Width: Constant, greater than or equal to 1.

BlobListPtr: Pointer to a PxsBlobList structure.

PL1RAM: Handle to a PAL PL1RAM.

ClockRate: Constant, equal to the local clock rate.

Blob: Constant or variable index into blob list.

AreaPtr: Pointer to a variable of type unsigned 32.

SumXPtr/SumYPtr: Pointer to a variable of type signed 32.

X0Ptr/X1Ptr/Y0Ptr/Y1Ptr: Pointer to a variable of type signed 16.

Latency

1 frame + 3 cycles

Haltable

No

Description

Perform connected-component (blob) labelling and analysis. Connected components are
clusters of white pixels that are connected together (connectivity is four way: up, down, left
and right).

PixelStreams Manual

www.celoxica.com Page 116

and is not NOTE: PxsLabelBlobs() is currently in BETA,
recommended for production use. The API is also subject to change.

PxsLabelBlobs() labels the binary input stream and outputs a new stream one frame later
in which each blob is given a unique pixel value, starting from 1.

ndle to the PalPL1RAM structure

ter a VSync

ext frame.

d.

dinates of the blob. Dividing

tGetBoundingBox() gives the coordinates of the bounding box of a blob.

ee the "LabelBlobs" example.

Width is the maximum
width of the active image region. PL1RAM is a constant ha
used as a buffer. ClockRate is the maximum clock rate.

PxsBlobListLock() and PxsBlobListUnlock() are used to lock and unlock the blob list
structure respectively. The structure becomes available for locking shortly af
transition, and must be unlocked before the beginning of the n

PxsBlobListNumBlobs() gives the number of blobs labelle

PxsBlobListGetArea() gives the area of a specific blob.

PxsBlobListGetSumXY() gives the sum of the X and Y coor
these numbers by the area yields the centroid of the blob.

PxsBlobLis

Example

S

PixelStreams Manual

www.celoxica.com Page 117

7.11 Look-Up-Tables (LUTs)

Look-up-tables transform pixel values according to arbitrary functions stored in small RAMs
or ROMs.

• PxsDynamicLUT: dynamic value transforms

• PxsDynamicLUT3: dynamic 3-channel value transforms

• PxsHistogramEqualize: histogram equalization

• PxsSelectLUT: selectable value transforms

• PxsStaticLUT: static value transforms

• PxsStaticLUT3: static 3-channel value transforms

• PxsLUT8*: standard LUT initializers

PixelStreams Manual

www.celoxica.com Page 118

7.11.1 PxsDynamicLUT: dynamic value transforms

#include "pxs.hch"

typedef mpram
{
 rom unsigned 8 W[256];
 rom unsigned 8 R[256];
}
PxsLUT8;

macro proc PxsDynamicLUT (In, Out, LUTPtr);

Input Streams

In: Must contain pixels of type PXS_MONO_U8.

Output Streams

Out: Must be compatible with both In.

Parameters

LUTPtr: Pointer to a PxsLUT8

Latency

1 cycle

Haltable

No

Description

Transform the pixel values of the input stream according to a dynamically variable
look-up-table (LUT) declared by the user. The PxsLUT8 should be treated as a normal
Handel-C on-chip RAM: it can be declared as either distributed or block RAM, and it may be
optionally initialized. The contents of the LUT can be altered by writing to the "W" port of the
RAM. The "R" port is reserved for the LUT filter itself.

Example

See the "DynamicLUT" example.

PixelStreams Manual

www.celoxica.com Page 119

7.11.2 PxsDynamicLUT3: dynamic 3-channel value transforms

#include "pxs.hch"

typedef mpram
{
 wom unsigned 8 W[256];
 rom unsigned 8 R[256];
}
PxsLUT8;

macro proc PxsDynamicLUT3 (In, Out, LUT0Ptr, LUT1Ptr, LUT2Ptr);

Input Streams

In: Must contain pixels of type PXS_RGB_U8 or PXS_YCbCr_U8.

Output Streams

Out: Must be compatible with both In.

Parameters

LUTPtr: Pointer to a PxsLUT8

Latency

1 cycle

Haltable

No

Description

Transform the pixel values of the input stream according to three dynamically variable
look-up-tables (LUTs) declared by the user. The PxsLUT8s should be treated as a normal
Handel-C on-chip RAMs: they can be declared as either distributed or block RAM, and can
optionally be initialized. The contents of each LUT can be altered by writing to the "W" port
of the RAM. The "R" port is reserved for the LUT filter itself.

Example

See the "DynamicLUT" example.

PixelStreams Manual

www.celoxica.com Page 120

7.11.3 PxsHistogramEqualize: histogram equalization

#include "pxs.hch"

macro proc PxsHistogramEqualize (In, Out, AnalysisPtr);

Input Streams

In: Must contain pixels of type PXS_MONO_U8.

Output Streams

Out: Must be compatible with both In.

Parameters

AnalysisPtr: Pointer to a PxsAnalysis structure

Latency

1 cycle

Haltable

No

Description

Perform histogram equalization of the input stream. This redistributes the spread of pixel
values in order to give an approximately flat distribution (and therefore an even balance of
shades). AnalysisPtr should point to a structure that is being updated by a corresponding
PxsAnalyse() filter.

Example

See the "HistogramEq" example.

PixelStreams Manual

www.celoxica.com Page 121

7.11.4 PxsSelectLUT: selectable value transforms

#include "pxs.hch"
macro proc PxsSelectLUT (In, Out, LUTCount, LUTInit, LUTSelect);

Input Streams

In: Must contain pixels of type PXS_MONO_U8, PXS_RGB_U8 or PXS_YCbCr_U8.

Output Streams

Out: Must be compatible with both In.

Parameters

LUTCount: Constant, greater than or equal to 1.

LUTInit: List of (LUTCount * 256) constants in the range 0..255 inclusive.

LUTSelect:Variable, of type unsigned (log2ceil (LUTCount - 1))

Latency

1 cycle

Haltable

No

Description

Transform the pixel values of the input stream according to a number of fixed
look-up-tables (LUTs). Each pixel channel value is looked up in a ROM initialized by the
LUTInit argument. Several different tables can be concatenated together and dynamically
chosen at runtime by varying the value of LUTSelect. On Xilinx Virtex-II and later devices,
8 single-channel LUTs can fit within one 18-KBit BlockRAM.

Some standard LUTs are provided (see the PxsLUT8* macros).

Example

See the "SelectLUT" example.

PixelStreams Manual

www.celoxica.com Page 122

7.11.5 PxsStaticLUT: static value transforms

#include "pxs.hch"
macro proc PxsStaticLUT (In, Out, LUTInit);

Input Streams

In: Must contain pixels of type PXS_MONO_U8, PXS_RGB_U8 or PXS_YCbCr_U8.

Output Streams

Out: Must be compatible with both In.

Parameters

LUTInit: List of 256 constants in the range 0..255 inclusive.

Latency

1 cycle

Haltable

No

Description

Transform the pixel values of the input stream according to a fixed look-up-table (LUT).
Each pixel channel value is looked up in a ROM initialized by the LUTInit argument.

Some standard LUTs are provided (see the PxsLUT8* macros).

Example

See the "LUT" example.

PixelStreams Manual

www.celoxica.com Page 123

7.11.6 PxsStaticLUT3: static 3-channel value transforms

#include "pxs.hch"
macro proc PxsStaticLUT3 (In, Out, LUT0Init, LUT1Init, LUT2Init);

Input Streams

In: Must contain pixels of type PXS_RGB_U8 or PXS_YCbCr_U8.

Output Streams

Out: Must be compatible with both In.

Parameters

LUTInit: List of 256 constants in the range 0..255 inclusive.

Latency

1 cycle

Haltable

No

Description

Transform the pixel values of the input stream according to a fixed look-up-table (LUT).
Each pixel channel value is looked up in one ROM per channel, initialized by the LUT*Init
arguments.

Some standard LUTs are provided (see the PxsLUT8* macros).

Example

See the "LUT" example.

PixelStreams Manual

www.celoxica.com Page 124

7.11.7 PxsLUT8*: standard LUT initializers

macro expr PxsLUT8Linear;
macro expr PxsLUT8Inverse;
macro expr PxsLUT8Square;
macro expr PxsLUT8SquareRoot;
macro expr PxsLUT8SCurve;
macro expr PxsLUT8HalfSine;
macro expr PxsLUT8HalfCosine;
macro expr PxsLUT8Sine;
macro expr PxsLUT8Cosine;
macro expr PxsLUT8DoubleSine;
macro expr PxsLUT8DoubleCosine;
macro expr PxsLUT8InverseHalfSine;
macro expr PxsLUT8InverseHalfCosine;
macro expr PxsLUT8InverseSine;
macro expr PxsLUT8InverseCosine;
macro expr PxsLUT8InverseDoubleSine;
macro expr PxsLUT8InverseDoubleCosine;
macro expr PxsLUT8Logarithm;

Description

A range of standard LUT initializer expressions. If i is the input value, scaled to the range
0..1, angle is (i * 2 * pi), and j is the output value, then the LUT transformations are as
follows:

PxsLUT8Linear is the identity function, j = i

PxsLUT8Inverse inverts the pixel values, j = 1 - i

PxsLUT8Square computes the square of pixel values, j = i*i

PxsLUT8SquareRoot computes the square root values, j = sqrt (i)

PxsLUT8SCurve computes a contrast enhancing S-Curve, j = f0*f0*f0*(f0 * (f0 * 6 - 15) +
10)

PxsLUT8HalfSine computes a half sine-wave transform, j = sin (angle/2)

PxsLUT8HalfCosine computes a half cosine-wave transform, j = cos (angle/2)

PxsLUT8Sine computes a sine-wave transform, j = sin (angle)

PxsLUT8Cosine computes a cosine-wave transform, j = cos (angle)

PxsLUT8DoubleSine computes a double sine-wave transform, j = sin (2 * angle)

PxsLUT8DoubleCosine computes a double cosine-wave transform, j = cos (2 * angle)

PixelStreams Manual

www.celoxica.com Page 125

PxsLUT8InverseHalfSine, PxsLUT8InverseHalfCosine, PxsLUT8InverseSine,
PxsLUT8InverseCosine, PxsLUT8InverseDoubleSine, PxsLUT8InverseDoubleCosine are
the inverse of the above functions.

PxsLUT8Logarithm computes a logarithm transform (with a baseline offset by 1/256).

Example

See the "LUT" and "SelectLUT" examples.

PixelStreams Manual

www.celoxica.com Page 126

7.12 Morphology

Morphological filters apply shape-based transforms on greyscale or binary images.

• PxsClose: morphological closing

• PxsDilate: morphological dilation

• PxsErode: morphological erosion

• PxsOpen: morphological opening

PixelStreams Manual

www.celoxica.com Page 127

7.12.1 PxsClose: morphological closing

#include "pxs.hch"
macro proc PxsClose (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
PXS_MONO_U1, PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Must be compatible with In.

Parameters

Width: Constant, greater than or equal to 1.

Latency

2 lines and 10 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 closing operation on the input stream. Width is the maximum active width of
the input stream in pixels. Closing is dilation followed by erosion, and tends to increase the
connectivity of the image (whilst also retaining approximately the same shape and area).

A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

PixelStreams Manual

www.celoxica.com Page 128

7.12.2 PxsDilate: morphological dilation

#include "pxs.hch"
macro proc PxsDilate (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
PXS_MONO_U1, PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Must be compatible with In.

Parameters

Width: Constant, greater than or equal to 1.

Latency

1 line and 5 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 dilation filter on the input stream. Width is the maximum active width of the
input stream in pixels. The output value is the maximum of the 9 input values in the 3x3
window around the central pixel. This filter is useful for growing bright regions (often to
increase connectivity).

A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

Example

See the "Morphology" example.

PixelStreams Manual

www.celoxica.com Page 129

7.12.3 PxsErode: morphological erosion

#include "pxs.hch"
macro proc PxsErode (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
PXS_MONO_U1, PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Must be compatible with In.

Parameters

Width: Constant, greater than or equal to 1.

Latency

1 line and 5 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 erosion or dilation filter on the input stream. Width is the maximum active
width of the input stream in pixels. The output value is the minimum of the 9 input values
in the 3x3 window around the central pixel. This filter is useful for shrinking bright regions
(typically to decrease connectivity).

A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

Example

See the "Morphology" example.

PixelStreams Manual

www.celoxica.com Page 130

7.12.4 PxsOpen: morphological opening

#include "pxs.hch"
macro proc PxsOpen (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
PXS_MONO_U1, PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Must be compatible with In.

Parameters

Width: Constant, greater than or equal to 1.

Latency

2 lines and 10 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 opening operation on the input stream. Width is the maximum active width
of the input stream in pixels. Opening is erosion followed by dilation, and tends to reduce
the connectivity of the image (whilst retaining approximately the same shape and area).

A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

PixelStreams Manual

www.celoxica.com Page 131

7.12.5 PxsNonMaximaSuppressLine: clip pixels that are not a 2D
maxima

#include "pxs.hch"
macro proc PxsNonMaximaSuppressLine (In, Out, Width);

Input Streams

In: Must have synchronous coordinates. Must be progressively scanned. Pixel type must be
either PXS_MONO_U8 or PXS_MONO_S16.

Output Streams

Out: Must be compatible with In.

Parameters

Width: Constant, greater than or equal to 1.

Latency

1 line and 9/10 cycles (subject to change)

Haltable

No

Description

Perform a 3x3 Sobel edge detection on the input stream. Width is the maximum active
width of the input stream in pixels. The stream is convolved with the coefficients:

-1 -2 -1

0 0 0

1 2 1
to compute the vertical gradient, and coefficients

-1 0 1

-2 0 2

-1 0 1
to compute the horizontal gradient. The result is the sum of the absolute value of these two
gradients, and is proportional to the smoothed edge intensity at a given point.

A single pixel layer bordering the active region will contain invalid results (since the
calculation will involve pixels outside the active region).

Example

See the "EdgeDetect" example.

PixelStreams Manual

www.celoxica.com Page 132

PixelStreams Manual

www.celoxica.com Page 133

7.13 Noise generators

Noise generators insert pseudo-random values into streams, typically for simulating sensor
degradation.

• PxsGaussianNoise: Gaussian noise generator

• PxsPerlinNoise: Perlin noise generator

• PxsSaltAndPepper: impulse noise overlay

• PxsWhiteNoise: white noise generator

PixelStreams Manual

www.celoxica.com Page 134

7.13.1 PxsGaussianNoise: Gaussian noise generator

#include "pxs.hch"
macro proc PxsGaussianNoise (In, Out, Seed, FixedPattern);

Input Streams

In: Must contain sync pulses.

Output Streams

Out: Sync and coord types must be compatible with In.

Parameters

Seed: Constant of type unsigned 32

FixedPattern: Constant or variable of type unsigned 1

Latency

1 cycle

Haltable

No

Description

Generate independent (approximate) Gaussian noise on all channels of the output. The
pixel values are spread over the complete range allowed by each channel. Seed can be any
number (0 is acceptable), and is typically used to create several independent channels of
noise. The noise can be forced to be "fixed pattern" by setting the value of FixedPattern to
1. This produces noise which is identical on each frame (synchronized to sync pulses).

 Note: whilst the noise has a distribution that is roughly Gaussian, it is
only an approximation achieved by application of the central limit
theorem. In addition, the caveat regarding randomness described in
PxsWhiteNoise() also applies.

Example

See the "Noise" example.

PixelStreams Manual

www.celoxica.com Page 135

7.13.2 PxsPerlinNoise: Perlin noise generator

#include "pxs.hch"
macro proc PxsPerlinNoise (In, Out, Bits);

Input Streams

In: Must contain coordinates, and have pixel type PXS_MONO_S16.

Output Streams

Out: Must be compatible with In.

Parameters

Bits: Constant, from 0 to 9 inclusive.

Latency

16 cycles

Haltable

No

Description

Generate Perlin noise. Perlin noise is an approximation to filtered Gaussian noise that
supports random access without requiring pre-computation. This is often used to produce
hypertextures. The noise generated by PxsPerlinNoise() is 3D, indexed by the (X, Y)
coordinates of the input stream, and the value of the pixel input (Z). The parameter Bits
sets the scale of the noise, with a value of 0 being the smallest scale up (and progressing in
powers of two).

 implementation takes a significant amount of Note that the current
time and memory to compile.

Example

See the "PerlinRipple" example.

PixelStreams Manual

www.celoxica.com Page 136

7.13.3 PxsSaltAndPepper: impulse noise overlay

#include "pxs.hch"
macro proc PxsSaltAndPepper (In, Out, Seed, FixedPattern, Frequency);

Input Streams

In: Must contain sync pulses.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be the same as In,
unless In is PXS_EMPTY.

Parameters

Seed: Constant of type unsigned 32

FixedPattern: Constant or variable of type unsigned 1

Frequency: Constant or variable of type unsigned 9

Latency

1 cycle

Haltable

No

Description

Generate independent impulse (salt-and-pepper) noise on all channels of the output. The
input stream is copied to the output stream, except that the output color is sometimes
forced to black or white (chosen at random) with a given frequency. Seed can be any
number (0 is acceptable), and is typically used to create several independent channels of
noise. The noise can be forced to be "fixed pattern" by setting the value of FixedPattern to
1. This produces noise which is identical on each frame (synchronized to sync pulses).
Frequency sets the probability that a given pixel will be corrupted, and ranges from 0 (no
corruption) to 256 (every pixel corrupted).

 caveat regarding randomness described in Note: the
PxsWhiteNoise() also applies.

Example

See the "MedianFilter" example.

PixelStreams Manual

www.celoxica.com Page 137

PixelStreams Manual

www.celoxica.com Page 138

7.13.4 PxsWhiteNoise: white noise generator

macro proc PxsWhiteNoise (In, Out, Seed, FixedPattern);

nput Streams

In: Must contain sync pulses.

Output Streams

Out: Sync and coord types must be compatible with In.

Parameters

Seed: Constant of type unsigned 32

FixedPattern: Constant or variable of type unsigned 1

Latency

1 cycle

Haltable

No

Description

Generate independent white noise on all channels of the output. The pixel values are spread
over the complete range allowed by each channel. Seed can be any number (0 is
acceptable), and is typically used to create several independent channels of noise. The
noise can be forced to be "fixed pattern" by setting the value of FixedPattern to 1. This
produces noise which is identical on each frame (synchronized to sync pulses).

 Note: whilst the noise is visually uncorrelated and has a flat

#include "pxs.hch"

I

distribution, it is produced by a relatively crude method which would not
satisfy standard measures of randomness.

Example

See the "Noise" example.

PixelStreams Manual

www.celoxica.com Page 139

7.14 Plotters

Plotters are filters that generate (Pixel value, Coordinate) pairs in arbitrary orders.

• PxsPlot: plotted graphics

PixelStreams Manual

www.celoxica.com Page 140

7.14.1 PxsPlot: plotted graphics

typedef struct PxsPlotHandle;
Ptr);

 PxsPlotSetPen_YCbCr_U8 (PlotHandlePtr, Y, Cb, Cr);
ePtr, X, Y);

acro proc PxsPlotRectangle (PlotHandlePtr, X0, Y0, X1, Y1);

utput Streams

Out: Must not expect sync pulses (declare with PXS_N_A).

Parameters

PlotHandlePtr: Pointer to a PxsPlotHandle structure

Shade/R/G/B/Y/Cb/Cr: Value of the appropriate type for the pixel channel

X/Y/X0/Y0/X1/Y1: Value of type signed 16

Latency

N/A

Haltable

Yes

Description

A general purpose plotting engine capable of drawing pixels, lines and filled rectangles. The
output of the engine is an intermittent stream of pixels and coordinates, but no sync pulses.
As a result, this stream cannot be used directly to drive a display, and must be fed into a
framebuffer to be visualized. Access to the plot engine is via a PxsPlotHandle structure
which should be declared by the user.

PxsPlot() is the filter itself.

PxsPlotSetPen_*() sets the current pen color for each of the possible pixel types. Note
that the correct macro must be used to match the output pixel type of stream "Out". No
compile-time checking is performed.

PxsPlotPixel() plots a single pixel in the current pen color. If you have a substantial
number of pixels to plot (such as rendering a bitmap), this method is not recommended.
Instead, consider creating a custom filter.

#include "pxs.hch"

macro proc PxsPlot (Out, PlotHandle
macro proc PxsPlotSetPen_MONO_U1 (PlotHandlePtr, Shade);
macro proc PxsPlotSetPen_MONO_U8 (PlotHandlePtr, Shade);
macro proc PxsPlotSetPen_MONO_S16 (PlotHandlePtr, Shade);
macro proc PxsPlotSetPen_RGB_U8 (PlotHandlePtr, R, G, B);
macro proc
macro proc PxsPlotPixel (PlotHandl
macro proc PxsPlotLine (PlotHandlePtr, X0, Y0, X1, Y1);
m

O

PixelStreams Manual

www.celoxica.com Page 141

PxsPlotLine() plots a line from (X0, Y0) to (X1, Y1) in the current pen color, using

plots a filled rectangle (X0, Y0) to (X1, Y1) inclusive, the current pen

The capabilities of this engine may be extended in future.

The plo rent clock domain to the filter itself. This
is conv ie ding microprocessor interfaces.

Example

See the "Plot", "Join", and "LabelBlobs" examples.

Bresenham's algorithm.

PxsPlotRectangle()
color.

t access macros may be called from a diffe
en nt for multirate designs and those inclu

PixelStreams Manual

www.celoxica.com Page 142

7.15 Sync generators

Sync generators create streams of sync pulses and coordinates capable of driving output

cGen: TV sync generator

devices.

• PxsTVSyn

• PxsVGASyncGen: VGA sync generator

PixelStreams Manual

www.celoxica.com Page 143

7.15.1 PxsTVSyncGen: TV sync generator

#include "pxs.hch"
macro proc PxsTVSyncGen (Out, Mode);

Output Streams

Out: Sync type must be PXS_INTERLACED_TV (or a subset of). Pixel type must be
PXS_EMPTY.

Parameters

Mode: Constant, of type unsigned 1.

Latency

N/A

Haltable

Yes

Description

Generate TV compatible sync pulses with synchronous coordinates. The output of this
source filter is typically passed through a series of video generating blocks (for example, a
Console or FrameBuffer) and filters, before being passed to a PxsTVOut() sink block. Mode
is either NTSC (0) or PAL (1).

Example

See the "TVOut" example.

PixelStreams Manual

www.celoxica.com Page 144

7.15.2 PxsVGASyncGen: VG

#include "pxs.hch"

OGRE E_VGA (or bset of). l type

n2Mo

nchro coordina The ou is
 of video generati locks (f ple, a

s, before being passed a PxsVGAOut() sink block.

A sync generator

macro proc PxsVGASyncGen (Out, Mode);

Output Streams

Out: Sync type must be PXS_PR SSIV a su Pixe must be
PXS_EMPTY.

Parameters

Mode: Constant, of type SyncGe de.

Latency

N/A

Haltable

Yes

Description

Generate VGA compatible sync pulses with sy nous tes. tput of th
source filter is typically passed through a series
Console or FrameBuffer) and filter

ng b or exam
 to Mode

must be one of:

PixelStreams Manual

www.celoxica.com Page 145

Mode Horizontal
Resolution,

Vertical
Resolution,

Refresh
Rate, Hz

Clock rate
MHz

Pixels Lines

,

60 25.175 SYNCGEN_MODE_640_480_60HZ 640 480
SYNCGEN_MODE_640_480_72HZ 640 480 72 31.500

E_640_480_ 85 36.000
SYNCGEN_MODE_800_600_56HZ 800 600 56 38.100

800_600_60HZ 800 600 60 40.000

0 72 50.000
ODE_800_600_75HZ 800 600 75 49.500

800 600 85 56.250

1024 768 60 65.000
DE_1024_768_70HZ 1024 768 70 75.000

GEN_MODE_1024_768_75HZ 1024 768 75 78.750
SYNCGEN_MODE_1024_768_85HZ 1024 768 85 94.500

1152_864_75HZ 1152 864 75 108.000

108.000

135.000
SYNCGEN_MODE_1280_1024_85HZ 1280 1024 85 157.500
SYNCGEN_MODE_1600_1200_60HZ 1600 1200 60 162.000
SYNCGEN_MODE_1600_1200_75HZ 1600 1200 75 202.500
SYNCGEN_MODE_1600_1200_80HZ 1600 1200 80 216.000
SYNCGEN_MODE_1600_1200_85HZ 1600 1200 85 229.500

Example

See the "TestCard" example.

SYNCGEN_MODE_640_480_75HZ 640 480 75 31.500
SYNCGEN_MOD 85HZ 640 600

SYNCGEN_MODE_

SYNCGEN_MODE_800_600_72HZ 800 60
SYNCGEN_M

SYNCGEN_MODE_800_600_85HZ

SYNCGEN_MODE_1024_768_60HZ

SYNCGEN_MO

SYNC

SYNCGEN_MODE_

SYNCGEN_MODE_1152_864_85HZ 1152 864 85 128.940
SYNCGEN_MODE_1152_882_70HZ 1152 882 70 94.500
SYNCGEN_MODE_1152_882_85HZ 1152 882 85 121.500
SYNCGEN_MODE_1280_1024_60HZ 1280 1024 60
SYNCGEN_MODE_1280_1024_75HZ 1280 1024 75

PixelStreams Manual

www.celoxica.com Page 146

7.15.3 PxsVGASyncG justable VGA sync generator

ncGe ;

t be PX ubset of). Pixel type must be

ointer to a Sy re.

escription

nchronous coordinates. The output of this
ource filter is typically passed through a series of video generating blocks (for example, a

Console or FrameBuffer) and filters, before being passed to a PxsVGAOut() sink block. The
timing parameters of the mode are specified by the structure pointer to by TimingPtr.
These values can be statically initialised, and modified at run time.

The SyncGen2Timing structure contains the following members:

enDynamic: ad

#include "pxs.hch"
macro proc PxsVGASy nDynamic (Out, TimingPtr)

Output Streams

 musOut: Sync type
.

S_PROGRESSIVE_VGA (or a s
PXS_EMPTY

Parameters

TimingPtr: P ncGen2Timing structu

Latency

N/A

Haltable

Yes

D

Generate VGA compatible sync pulses with sy
s

PixelStreams Manual

www.celoxica.com Page 147

DotClock Dot clock, in Hz

efresh rate, in Hz

X resolution (visible), in pixels

HSyncPixels Pixels of horizontal sync
HBackPorchPixels s after horizontal sync
HTotalPixels zontal pixels
VActiveLines

Lines of vertical sync
VBackPorchLines Lines after vertical sync
VTotalLines Total vertical lines
HSyncPolarity Polarity of HSync, 1 = Positive
VSyncPolarity Polarity of VSync, 1 = Positive

Example

See the "SyncGenDynamic" example.

RefreshRate R
HActivePixels

HFrontPorchPixels Pixels before horizontal sync

Pixel

Total hori

Y resolution (visible)
VFrontPorchLines

VSyncLines

Lines before vertical sync

PixelStreams Manual

www.celoxica.com Page 148

7.16 Video I/O

Video input filters read video data from external devices such as cameras. Video output

 TV output

• PxsVGAOut: VGA outp

filters write streams to output devices such as monitors.

• PxsTVIn: TV input

• PxsTVOut:

• PxsVGAIn: VGA input

ut

PixelStreams Manual

www.celoxica.com Page 149

7.16.1 PxsTVIn: TV input

#include "pxs.hch"
macro proc PxsTVIn (Out, InputIndex, Config, ClockRate);
macro expr PxsTVInInputCount ();
macro expr PxsTVInConfigCount (InputIndex);

Output Streams

sync type.

fig
ting

for SDTV).

ple.

Out: Must expect pixels of type PXS_YCbCr_U8. Must expect interlaced

Parameters

InputIndex: Constant, greater than or equal to 0.

Config: Constant or variable, greater than or equal to 0.

ClockRate: Constant, equal to the local clock rate.

Latency

N/A

Haltable

No

Description

Read pixels from a TV input. InputIndex selects a particular physical input (each physical
input may be used only once). Config selects a particular configuration of that input (for
example, when multiplexing multiple inputs at the board level). On some platforms, Con
may be variable at runtime. The total number of inputs can be queried by evalua
PxsTVInInputCount(). The number of configurations for a given input can be queried by
evaluating PxsTVInConfigCount(). The meaning of the input number and configuration
number are entirely platform dependent, however we recommend that (Input 0, Config 0)
be the typical configuration.

In order to avoid dropping pixels, ClockRate should be greater than the dot clock of the
input signal (typically 13.5MHz

Example

See the "FrameBuffer" exam

PixelStreams Manual

www.celoxica.com Page 150

7.16.2 PxsTVOut: TV output

#include "pxs.hch"
macro proc PxsTVOut (In, OutputIndex, Config, ClockRate);
macro expr PxsTVOutOutputCount ();
macro expr PxsTVOutConfigCount (OutputIndex);

Input Streams

In: Sync type must be interlaced TV. Pixel type must be PXS_RGB_U8.

Parameters

OutputIndex: Constant, greater than or equal to 0.

f

he stream to be displayed. If you need to
display at a low
(see the "VGA

Example

See the "TVOut"

Config: Constant or variable, greater than or equal to 0.

ClockRate: Constant, equal to the local clock rate.

Latency

N/A

Haltable

No

Description

Display a stream on a TV output. OutputIndex selects a particular physical output (each
physical output may be used only once). Config selects a particular configuration of that
output. On some platforms, Config may be variable at runtime. The total number o
outputs can be queried by evaluating PxsTVOutOutputCount(). The number of
configurations for a given output can be queried by evaluating PxsTVOutConfigCount().
The meaning of the output number and configuration number are entirely platform
dependent, however we recommend that (Output 0, Config 0) be the typical configuration.

ClockRate must exactly match the pixel rate of t
er pixel rate than you are processing, you must use multiple clock domains

toTV" example).

 example.

PixelStreams Manual

www.celoxica.com Page 151

7.16.3 PxsVGAIn: VGA input

#include "pxs.hch"
macro proc PxsVGAIn (Out, InputIndex, Config, ClockRate);
macro expr PxsVGAInInputCount ();
macro expr PxsVGAInConfigCount (InputIndex);

Output Streams

Out: Must expect pixels of type MONO_RGB_U8. Must expect progressive sync type.

Parameters

InputIndex: Constant, greater than or equal to 0.

Config: Constant or variable, greater than or equal to 0.

ClockRate: Constant, equal to the local clock rate.

Latency

N/A

Haltable

No

Description

Read pixels from a VGA (or DVI) input. InputIndex selects a particular physical input (each
physical input may be used only once). Config selects a particular configuration of that
input (for example, when multiplexing multiple inputs at the board level). On some
platforms, Config may be variable at runtime. The total number of inputs can be queried by
evaluating PxsVGAInInputCount(). The number of configurations for a given input can be
queried by evaluating PxsVGAInConfigCount(). The meaning of the input number and
configuration number are entirely platform dependent, however we recommend that (Input
0, Config 0) be the typical configuration.

 Note that VGA inputs typically produce much greater pixel rates than
TV inputs. As current pixel types allow for at most one pixel per clock
cycle, the pixel rate of the input must be less than ClockRate, otherwise
pixels may be dropped. For example, to capture 1024 x 768 @ 60Hz (XGA)
at a dot-clock of 65MHz, it is recommended to run the design at a speed
just slightly greater than this (for example, 66MHz) to allow for PLL
tolerances.

PixelStreams Manual

www.celoxica.com Page 152

Example

See the "VGAIn" example.

PixelStreams Manual

www.celoxica.com Page 153

7.16.4 PxsVGAOut: VGA output

xsVGAOut (In, OutputIndex, Config, ClockRate);
macro expr PxsVGAOutOutputCount ();
macro p

Input t

In: Sync t PXS_RGB_U8.

Paramet

utputIndex: Constant, greater than or equal to 0.

Config: Constant or variable, greater than or equal to 0.

ClockRate: Constant, equal to the local clock rate.

Latency

N/A

Haltable

No

Description

Display a stream on a VGA (or DVI) output. OutputIndex selects a particular physical
output (each physical output may be used only once). Config selects a particular
configuration of that output. On some platforms, Config may be variable at runtime. The
total number of outputs can be queried by evaluating PxsVGAOutOutputCount(). The
number of configurations for a given output can be queried by evaluating
PxsVGAOutConfigCount(). The meaning of the output number and configuration number
are entirely platform dependent, however we recommend that (Output 0, Config 0) be the
typical configuration.

ClockRate must exactly match the pixel rate of the stream to be displayed. If you need to
display at a lower pixel rate than you are processing, you must use multiple clock domains
(see the "MultiDomain" example).

Example

See the "TestCard" example.

#include "pxs.hch"
macro proc P

ex r PxsVGAOutConfigCount (OutputIndex);

 S reams

ype must be progressive VGA. Pixel type must be

ers

O

PixelStreams Manual

www.celoxica.com Page 154

7.17 Video generators

Video generators insert pixel values into streams based on sync and coordinate

kerboard: checkerboard pattern generator

nt3: constant color generator

• PxsConstant/PxsConstant3: constant color generator

rd: test card generator

information.

• PxsChec

• PxsConstant/PxsConsta

• PxsTestCa

• PxsXorPattern: XOR pattern generator

PixelStreams Manual

www.celoxica.com Page 155

7.17.1 PxsCheckerboard: checkerboard pattern generator

#include "pxs.hch"
macro proc PxsCheckerboard (In, Out, CheckS

Input Streams

ize);

oordinates.

Output Streams

types must be compatible with In.

Parameters

tant, greater than or equal to 1.

le

cription

k and white checker board pattern.

Example

eoGen" example.

In: Must contain c

Out: Sync and coord

CheckSize: Cons

Latency

1 cycle

Haltab

No

Des

Generate a blac

CheckSize can be any constant, but it is significantly more efficient (in terms of area and
delay) to choose a power of two.

See the "Vid

PixelStreams Manual

www.celoxica.com Page 156

7.17.2 PxsConstant/PxsConstant3: constant color generator

nstant3 (In, Out, Value0, Value1, Value2);

In: All stream types.

able, of the same type as the pixel
channels of the output stream

Latency

Haltable

Description

ade on the output. generates the same value on all

See the "VideoGen" example.

#include "pxs.hch"
macro proc PxsConstant (In, Out, Value);
macro proc PxsCo

Input Streams

Output Streams

Out: Sync and coord types must be compatible with In.

Parameters

Value/Value0/Value1/Value2: Constant or vari

1 cycle

No

Generate a constant sh PxsConstant()
channels of a multi-channel stream (e.g. PXS_RGB_U8). PxsConstant3() can generate
different values on each of the channels of a multi-channel stream.

Example

PixelStreams Manual

www.celoxica.com Page 157

7.17.3 PxsTestCard: test card generator

#include "pxs.hch"
macro proc PxsTestCard (In, Out, Width, Height);

rs

Constant, width of visible area in pixels

nstant, height of visible area in pixels

ency

No

Description

Generate a test card stream. The image consists of a dark grey background, framed with a
hite line of single pixel thickness. Inside the grey area are animated vertical and horizontal

color bars. If the area is large enough, a diagonal XOR pattern and a series of
stripes/checkerboards are also generated. If the area is larger still, a central animated
target pattern is also generated.

Example

See the "TestCard" example.

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be either
PXS_MONO_U1, PXS_MONO_U8, PXS_MONO_S16 or PXS_RGB_U8.

Paramete

Width:

Height: Co

Lat

3 cycles

Haltable

w

PixelStreams Manual

www.celoxica.com Page 158

7.17.4 PxsXorPattern: XOR pattern generator

macro proc PxsXorPattern (In, Out);

Input t

In: M

Output S

Out: Sync a with In. Pixel type must be either
PXS_MONO_U1 or PXS_RGB_U8.

atency

1 cycle

Haltable

No

Description

Generate a traditional XOR pattern by combining X and Y coordinates to create the color
channels. This test pattern is particularly cheap to generate (in terms of logic elements).

Example

See the "VideoGen" example.

#include "pxs.hch"

 S reams

ust contain coordinates.

treams

nd coord types must be compatible
, , PXS_MONO_U8 PXS_MONO_S16

L

PixelStreams Manual

www.celoxica.com Page 159

7.18 Video overlays

Video overlay filters create output streams in which some areas are "see through".

ole: text console overlay

verlay

rid overlay

• PxsHistogramDisplay: generate a histogram overlay

 PxsRectangle: rectangle overlay

• PxsBouncingBall: bouncing ball overlay

• PxsCons

• PxsCursor: pointer o

• PxsGrid: g

• PxsOverlay: generic overlays

•

PixelStreams Manual

www.celoxica.com Page 160

7.18.1 PxsBouncingBall: bouncing ball overlay

, Width, Height, InitX, InitY, Size, Color1);

st be the same as In,

ble area in pixels

eight of visible area in pixels

InitY: Const Y position of the "ball"

, size in pixels of the "ball"

Color1: Constant or varia 1

am. The initial position, size and color of
e pixel per frame and always stays

area (0, 0) - (Width - 1, Height - 1).

e

eoGen" example.

#include "pxs.hch"
macro proc PxsBouncingBall (In, Out

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type mu
unless In is PXS_EMPTY.

Parameters

Width: Constant, width of visi

Height: Constant, h

InitX: Constant, initial X position of the "ball"

ant, initial

Size: Constant

ble of type unsigned

Latency

3 cycles

Haltable

No

Description

Overlay a simple "bouncing ball" onto the input stre
the ball are all set at compile time. The ball moves on
within the

Exampl

See the "Vid

PixelStreams Manual

www.celoxica.com Page 161

7.18.2 PxsConsole: text console overlay

#include "pxs.hch"
typedef struct PxsConsoleHandle;
macro proc PxsConsole (In, Out, ConsolePtr, Width, Height);

ar (ConsolePtr);

le with In. Pixel type must be the same as In,

tant or variable, of type unsigned 8

of type unsigned 8[]

alue: Constant or variable, of type unsigned 32

Latency

5 cycles

Haltable

No

macro proc PxsConsoleSetCursor (ConsolePtr, CursorOn);
macro proc PxsConsoleMoveCursor (ConsolePtr, X, Y);
macro proc PxsConsolePutChar (ConsolePtr, Char);
macro proc PxsConsolePutString (ConsolePtr, String);
macro proc PxsConsoleCle
macro proc PxsConsolePutHex32 (ConsolePtr, Value);
macro proc PxsConsolePutUInt32 (ConsolePtr, Value);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and coord types must be compatib
unless In is PXS_EMPTY.

Parameters

ConsolePtr: Pointer to a PxsConsoleHandle structure

Width: Constant, width of visible area in pixels

Height: Constant, height of visible area in pixels

CursorOn: Constant or variable, of type unsigned 1

X/Y: Constant or variable, of type unsigned 8

Char: Cons

String: Array or RAM/ROM,

V

PixelStreams Manual

www.celoxica.com Page 162

Description

The console is drawn with a standard 16x8
bitmap font. Access to the console is via a PxsConsoleHandle structure which should be

he filter itself.

es the current point visible (1) or invisible (0). By default, the

moves the current point (the location where new text will be

es a single character at the current point. Any existing character
eplaced. The insertion point wraps at the end of a line. Writing a

 location on the screen (bottom right) causes the screen to scroll by one
st 128 characters as defined
ntical to the first 128 but

ol characters '\n' and '\r' are interpreted as carriage returns, and '\t' is
racter stop.

writes a string of characters from either a RAM, ROM or array. The
ither by a NULL character (0), or by index overflow. The characters in

rs the screen and moves the cursor to position (0, 0).

Hex32() writes a 32-bit unsigned integer as a hex value, prefixed by "0x".

s decimal.

ock domain to the filter itself.
croprocessor interfaces.

onsole" example.

Overlay a text console onto the input stream.

declared by the user.

PxsConsole() is t

PxsConsoleSetCursor() mak
cursor is visible.

PxsConsoleMoveCursor()
written).

PxsConsolePutChar() writ
at the current location is r
character at the last
line, inserting a blank line at the bottom of the screen. The fir
by ASCII are supported, characters 128-255 are drawn as ide
inverted. The contr
interpreted as tab to next 8-cha

PxsConsolePutString()
string is terminated e
the string are interpreted exactly as for PxsConsolePutChar().

PxsConsoleClear() clea

PxsConsolePut

PxsConsolePutUInt32() writes a 32-bit unsigned integer a

The console access macros may be called from a different cl
This is convenient for multirate designs and those including mi

Example

See the "C

PixelStreams Manual

www.celoxica.com Page 163

7.18.3 PxsCursor: po

TER,
S,
,
,
1,

hape;
(In, Out, X, Y, CursorShape);

nput Streams

In: Must contain coordinates.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be the same as In,
unless In is PXS_EMPTY.

Parameters

X: Variable of type signed 16, X position of cursor in pixels

Y: Variable of type signed 16, Y position of cursor in pixels

CursorShape: Constant or variable, of type PxsCursorShape

Latency

3 cycles

Haltable

No

Description

Overlay a mouse pointer onto the input stream. The cursor is positioned by changing the
values of X and Y in parallel with the filter. The pointer has eight dynamically selectable
shapes:

inter overlay

#include "pxs.hch"
typedef enum
{
 PXS_CURSOR_POIN
 PXS_CURSOR_CROS
 PXS_CURSOR_BUSY
 PXS_CURSOR_MOVE
 PXS_CURSOR_SIZE
 PXS_CURSOR_SIZE2,
 PXS_CURSOR_SIZE3,
 PXS_CURSOR_SIZE4
}
PxsCursorS
macro proc PxsCursor

I

PixelStreams Manual

www.celoxica.com Page 164

PXS_CURSOR_POINTER Classical mouse pointer

(XOR'd with underlying image)

Hourglass

 Diagonal (top-right to bottom-left) two-headed arrow

gonal (top-left to bottom-right) two-headed arrow

Horizontal two-headed arrow

Vertical two-headed arrow

 at the position given in X and Y, regardless of the pointer shape).

PXS_CURSOR_CROSS Crosshairs

PXS_CURSOR_BUSY

PXS_CURSOR_MOVE Four-headed arrow
PXS_CURSOR_SIZE1

PXS_CURSOR_SIZE2 Dia
PXS_CURSOR_SIZE3

PXS_CURSOR_SIZE4

Hot-spot adjustment is handled automatically (i.e. the tip of the pointer, or center of the
cross hairs, will always be

Example

See the "GUI" example.

PixelStreams Manual

www.celoxica.com Page 165

7.18.4 PxsGrid: grid overlay

#include "pxs.hch"
macro proc PxsGrid (In, Out, GridSizeX, GridSizeY, OffsetX, OffsetY, Color1);

Input Streams

In: Must contain coordinates.

Output Streams

t be compatible with In. Pixel type must be the same as In,

Parameters

nstant greater than one

GridSizeY: greater tha

OffsetX: variable between 0 and GridSizeX - 1

OffsetY: tant or variable between 0 and GridSizeY - 1

t or variable of type unsigned 1

Latency

1

Haltable

No

Description

y

Out: Sync and coord types mus
unless In is PXS_EMPTY.

GridSizeX: Co

 Constant n one

 Constant or

 Cons

Color1: Constan

Overlay a grid onto the input stream. The grid is spaced at intervals of GridSizeX and
GridSizeY in the horizontal and vertical directions respectively. The grid is offset b
(OffsetX, OffsetY) pixels. The grid is either black (0) or white (1) depending on the value
of Color1.

The active area of the stream is extended to include the grid.

Example

See the "VideoGen" example.

PixelStreams Manual

www.celoxica.com Page 166

7.18.5 PxsHistogramDisplay: generate a histogram overlay

lyseHandlePtr, OriginX, OriginY,
tFactor);

In: Must contain coordinates.

Output Streams

Out: be compatible with In. Pixel type must be the same as In,

rs

andlePtr: Pointer to a PxsAnalyseHandle structure

iginY: Constant or variable of type signed 16

lative: Constant or variable of type unsigned 1

onstant or variable of type unsigned 6

istogram of pixel values onto a stream. AnaylseHandlePtr is a pointer to a
red by the user. This should be being updated by a

filter. (OriginX, OriginY) form the coordinates of the origin of the
istogram overlay. Cumulative selects between a normal histogram (0) and a cumulative

histogram (1). ShiftFactor is the degree to which the frequency values are shifted in order
to display them (i.e. a ShiftFactor of 5 will divide the frequencies by 2^5, resulting in
frequency bars 1/32th of the length).

Example

See the "Analysis" example.

#include "pxs.hch"
macro proc PxsHistogramDisplay (In, Out, Ana
Cumulative, Shif

Input Streams

 Sync and coord types must
unless In is PXS_EMPTY.

Paramete

AnalyseH

OriginX/Or

Cumu

ShiftFactor: C

Latency

3 cycles

Haltable

No

Description

Overlay a h
AnalyseHandle structure decla
PxsAnalyse()
h

PixelStreams Manual

www.celoxica.com Page 167

7.18.6 PxsOverlay: generic overlays

#include "pxs.hch"
macro proc PxsOverlay (Upper, Lower, Out);

Input Streams

Upper: All stream types.

Lower: All stream types.

Out: with both Upper and Lower.

Haltable

Description

 stream onto another. On a given cycle, if stream Upper contains an active pixel
is copied to stream Out. Otherwise, the pixel at stream Lower is copied to stream Out.

The active regions of streams can be controlled using the PxsClip*() filters.

actly the same sync and coordinate information as Upper.

output stream is halted, both input streams are halted.

deoGen" example.

Output Streams

 Must be compatible

Latency

1 cycles

No

Overlay one
this

The output stream contains ex
Upper and Lower should be synchronized, i.e. they should originate from the same source
and have the same latency. This can be achieved using a PxsSynchronise() filter. If the

Example

See the "Vi

PixelStreams Manual

www.celoxica.com Page 168

7.18.7 PxsRectangle: rectangle overlay

#include "pxs.hch"
macro proc PxsRectangle (In, Out, X0, Y0, X1, Y1, Color1);

Input Streams

In: Must contain coordinates.

Output Streams

Out: Sync and coord types must be compatible with In. Pixel type must be the same as In,
unless In is PXS_EMPTY.

Parameters

X0/Y0/X1/Y1: Constant or variable of type signed 16

Color1: Constant or variable of type unsigned 1

Latency

1 cycle

Haltable

No

Description

Overlay a rectangle onto the input stream. The rectangle stretches from (X0, Y0) to (X1, Y1)
inclusive. The rectangle is either black (0) or white (1) depending on the value of Color1.

Example

See the "Pong" example.

PixelStreams Manual

www.celoxica.com Page 169

8 Index
A

Arithmetic (1-op) 41

Arithmetic (2-op) 46

Arithmetic (Scalar) 57

C

Clipping ... 61

Conversions between pixel types 15

Converters 68

Convolutions 75

Coordinate transforms85, 93

Coordinate types............................. 15

Custom filters 23

D

Declaring streams 18

E

Ensuring pixels are not lost............... 21

F

Framebuffers 106

I

Image analysis 112

Image formation 20

L

Look-Up-Tables (LUTs)................... 117

M

Morphology 126

N

Noise generators........................... 133

P

PixelStreams7

PixelStreams GUI 32

Creating a Block 33

Creating a Stream 34

Design Properties 36

File Menu 36

Generating and compiling a design 35

Options 38

Plotters.. 139

PxsAbs() ..42

PxsAdd()..47

PxsAddSat()47

PxsAffineTransform()86

PxsAnalyse() 113

PxsAnd()..48

PxsAverage()..................................49

PxsBitSlice()69

PxsBlend()50

PxsBlur3x3()76

PxsBlur5x5()77

PxsBouncingBall() 160

PxsCheckerboard() 155

PxsClipBorder()...............................62

PxsClipCircle()63

PxsClipRectangle()64

PxsClipStream()65

PxsClose().................................... 127

PxsCombineRGB()70

PxsConsole() 161

PxsConstant()............................... 156

PxsConstant3() 156

PxsConvert()71

PxsConvolution3x3()........................78

PxsConvolution5x5()........................79

PxsConvolutionDual3x3()..................78

PxsCursor() 163

PxsDelay()94

PxsDilate() 128

PxsDisplace()..................................87

PxsDualLineBuffer()97

PxsDynamicLUT() 118

PxsDynamicLUT3() 119

PixelStreams Manual

www.celoxica.com Page 170

PxsDynamicRotate() 88

PxsErode() 129

PxsExtractRGB() 72

PxsFIFO()....................................... 95

PxsGaussianNoise() 134

PxsGrid() 165

PxsHistogramDisplay()................... 166

PxsHistogramEqualize() 120

PxsInvert()..................................... 43

PxsJoin().. 96

PxsLabelBlobs() 115

PxsLaplacian3x3() 80

PxsLineBuffer() 97

PxsLUT8*..................................... 124

PxsMax() 51

PxsMedianFilter() 81

PxsMin() .. 52

PxsMul() .. 53

PxsMux*()...................................... 98

PxsMux2Stream()............................ 98

PxsNegate() 44

PxsNonReturnValve()..................... 100

PxsNot() .. 45

PxsOpen().................................... 130

PxsOr().. 54

PxsOrderedDither() 73

PxsOrderedDither3()........................ 73

PxsOverlay() 167

PxsPalPL1RAMFrameBuffer() 110

PxsPalPL1RAMFrameBufferDB() 108

PxsPalPL1RAMReader() 107

PxsPerlinNoise()............................ 135

PxsPlot()...................................... 140

PxsRateLimiter() 101

PxsReceive() 102

PxsRectangle() 168

PxsRegenerateCoord() 89

PxsSaltAndPepper() 136

PxsSaturate()58

PxsScalar*59

PxsScale()......................................90

PxsScalePower2()............................91

PxsSelectLUT().............................. 121

PxsSend() 102

PxsSharpen3x3().............................82

PxsSobel()83

PxsSplit*() 103

PxsStaticLUT3() 123

PxsSub()..55

PxsSubSat()55

PxsSynchronise() 104

PxsTestCard()............................... 157

PxsThreshold()................................74

PxsTranslate()92

PxsTVIn()..................................... 149

PxsTVOut()................................... 150

PxsTVSyncGen() 143

PxsUnclip().....................................66

PxsUnclipAndBlank()........................67

PxsValve().................................... 105

PxsVGAIn() 151

PxsVGAOut() 153

PxsVGASyncGen() 144

PxsWhiteNoise()............................ 138

PxsXor() ..56

PxsXorPattern() 158

R

Ranges of pixel types.......................14

S

Stream compatibility........................17

Sync generators..................... 142, 148

Sync types16

PixelStreams Manual

www.celoxica.com Page 171

V

Video generators........................... 154

Video overlays 159

	Introduction
	Theory of operation
	Quick start

	Streams
	Pixel types
	Ranges of pixel types
	Conversions between pixel types

	Coordinate types
	Sync types
	Stream compatibility
	Pixel type
	Coordinate type
	Sync type

	Declaring streams
	Image formation
	Ensuring pixels are not lost

	Writing custom filters
	Platform specifics
	RC200 / RC200E / RC203 / RC203E
	Libraries
	PxsVGAIn
	PxsTVIn
	PxsVGAOut
	PxsTVOut

	RC300 / RC300E
	Libraries
	PxsVGAIn
	PxsTVIn
	PxsVGAOut
	PxsTVOut

	Simulation
	Library
	PxsVGAIn
	PxsTVIn
	PxsVGAOut
	PxsTVOut

	Description of examples
	PixelStreams GUI
	Adding a filter
	Properties

	Creating a stream
	Properties

	Generating and compiling the design
	Generating Handel-C
	Generating projects and launching DK

	File menu
	Project properties
	The Name tab
	The Custom Code tab

	Options
	Filters tab

	GUI examples

	Standard filters
	Arithmetic (1-op)
	PxsAbs: absolute value
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsInvert: inversion
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsNegate: negation
	Input Streams
	Output Streams
	Latency
	Haltable
	Description

	PxsNot: bitwise not
	Input Streams
	Output Streams
	Latency
	Haltable
	Description

	Arithmetic (2-op)
	PxsAdd/PxsAddSat: image addition
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsAnd: bitwise and
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsAverage: image average
	Input Streams
	Output Streams
	Latency
	Haltable
	Description

	PxsBlend: image blending
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsMax: image maximum
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsMin: image minimum
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsMul: image multiplication
	Input Streams
	Output Streams
	Latency
	Haltable
	Description

	PxsOr: bitwise or
	Input Streams
	Output Streams
	Latency
	Haltable
	Description

	PxsSub/PxsSubSat: image subtraction
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsXor: bitwise xor
	Input Streams
	Output Streams
	Latency
	Haltable
	Description

	Arithmetic (Scalar)
	PxsSaturate: saturate levels
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description

	PxsScalar*: scalar arithmetic
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Clipping
	PxsClipBorder: clip to remove a border
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsClipCircle: clip to a circle
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsClipRectangle: clip to a rectangle
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsClipStream: clip to a binary stream
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsUnclip: reset active region
	Input Streams
	Output Streams
	Latency
	Haltable
	Description

	PxsUnclipAndBlank: blank out clipped regions
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	Converters
	PxsBitSlice: bit slice extraction
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description

	PxsCombineRGB: create an RGB stream
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsConvert: color-space conversion
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsExtractRGB: split an RGB stream
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsOrderedDither/PxsOrderedDither3: ordered dithering
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsThreshold: binary threshold
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Convolutions
	PxsBlur3x3: blurring
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description

	PxsBlur5x5: heavy blurring
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description

	PxsConvolution3x3, PxsConvolutionDual3x3: arbitrary 3x3 conv
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsConvolution5x5: arbitrary 5x5 convolution
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsLaplacian3x3: high-pass filter
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description

	PxsMedianFilter: median filtering
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsSharpen3x3: sharpening
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description

	PxsSobel: edge detection
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Coordinate transforms
	PxsAffineTransform: affine transformation
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsDisplace: coordinate displacement
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsDynamicRotate: coordinate rotation
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsRegenerateCoord: recreate synchronous coordinates
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsScale: coordinate scaling
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsScalePower2: simple coordinate scaling
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsTranslate: coordinate shifting
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Flow control
	PxsDelay: delaying streams
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsFIFO: first-in-first-out buffering of streams
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsJoin: join two intermittent streams
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsLineBuffer/PxsDualLineBuffer: line buffering
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description

	PxsMux*: multiplexing streams
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsMux2Stream: multiplexing controlled by streams
	Input Streams
	Output Streams
	Latency
	Haltable
	Description

	PxsNonReturnValve: inhibiting flow control
	Input Streams
	Output Streams
	Latency
	Haltable
	Description

	PxsRateLimiter: limit stream data rate
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsSend/PxsReceive: passing streams over channels
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsSplit*: splitting streams
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsSynchronise: synchronize skewed streams
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsValve: controlling streams
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Framebuffers
	PxsPalPL1RAMReader: read a static image
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsPalPL1RAMFrameBufferDB: double-buffered framebuffer
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsPalPL1RAMFrameBuffer: single-buffered framebuffer
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Image analysis
	PxsAnalyse: analyse pixel values
	Input Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsLabelBlobs: connected component labelling
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Look-Up-Tables (LUTs)
	PxsDynamicLUT: dynamic value transforms
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsDynamicLUT3: dynamic 3-channel value transforms
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsHistogramEqualize: histogram equalization
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsSelectLUT: selectable value transforms
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsStaticLUT: static value transforms
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsStaticLUT3: static 3-channel value transforms
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsLUT8*: standard LUT initializers
	Description
	Example

	Morphology
	PxsClose: morphological closing
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description

	PxsDilate: morphological dilation
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsErode: morphological erosion
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsOpen: morphological opening
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description

	PxsNonMaximaSuppressLine: clip pixels that are not a 2D maxi
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Noise generators
	PxsGaussianNoise: Gaussian noise generator
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsPerlinNoise: Perlin noise generator
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsSaltAndPepper: impulse noise overlay
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsWhiteNoise: white noise generator
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Plotters
	PxsPlot: plotted graphics
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Sync generators
	PxsTVSyncGen: TV sync generator
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsVGASyncGen: VGA sync generator
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsVGASyncGenDynamic: adjustable VGA sync generator
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Video I/O
	PxsTVIn: TV input
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsTVOut: TV output
	Input Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsVGAIn: VGA input
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsVGAOut: VGA output
	Input Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Video generators
	PxsCheckerboard: checkerboard pattern generator
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsConstant/PxsConstant3: constant color generator
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsTestCard: test card generator
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsXorPattern: XOR pattern generator
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	Video overlays
	PxsBouncingBall: bouncing ball overlay
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsConsole: text console overlay
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsCursor: pointer overlay
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsGrid: grid overlay
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsHistogramDisplay: generate a histogram overlay
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	PxsOverlay: generic overlays
	Input Streams
	Output Streams
	Latency
	Haltable
	Description
	Example

	PxsRectangle: rectangle overlay
	Input Streams
	Output Streams
	Parameters
	Latency
	Haltable
	Description
	Example

	Index

