

DK4

DK Design Suite user guide

For DK version 4

DK Design Suite user guide

www.celoxica.com

Celoxica, the Celoxica logo and Handel-C are trademarks of Celoxica Limited.

All other products or services mentioned herein may be trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described
in, this document may be adapted or reproduced in any material form except with the
prior written permission of the copyright holder.

The product described in this document is subject to continuous development and
improvement. All particulars of the product and its use contained in this document are
given by Celoxica Limited in good faith. However, all warranties implied or express,
including but not limited to implied warranties of merchantability, or fitness for purpose,
are excluded.

This document is intended only to assist the reader in the use of the product. Celoxica
Limited shall not be liable for any loss or damage arising from the use of any information
in this document, or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general
guidance only.

Copyright © 2005 Celoxica Limited. All rights reserved.

Authors: SB

Document number: UM-2005-4.2

Customer Support at http://www.celoxica.com/support/

Celoxica in Europe Celoxica in Japan Celoxica in the Americas

T: +44 (0) 1235 863 656 T: +81 (0) 45 331 0218 T: +1 800 570 7004

E: sales.emea@celoxica.com E: sales.japan@celoxica.com E: sales.america@celoxica.com

DK Design Suite user guide

www.celoxica.com Page 1

Contents

1 GETTING STARTED WITH DK... 10
1.1 STARTING DK ... 10
1.2 CREATING A NEW FILE ... 10
1.3 WRITING SOURCE CODE ... 10
1.4 BUILD CONFIGURATION TYPES... 10
1.5 PROJECT DEVELOPMENT SEQUENCE ... 11

2 WINDOWS AND TOOLBARS... 13
2.1 WORKSPACE WINDOW... 13

2.1.1 File view .. 14
2.1.2 Symbol view .. 16

2.2 CODE EDITOR WINDOW.. 16
2.2.1 Code editor icons .. 17
2.2.2 Context menu - code editor window... 17
2.2.3 Syntax colour codes .. 17

2.3 OUTPUT WINDOW ICONS.. 18
2.4 DEBUGGER INTERFACE... 18

2.4.1 Debug buttons and icons.. 19
2.4.2 Call Stack window ... 20
2.4.3 Clocks/Threads window.. 20
2.4.4 Variables window .. 21
2.4.5 Watch window .. 22

2.5 TOOLBARS .. 22
2.5.1 Standard toolbar buttons ... 23
2.5.2 Status bar.. 23

2.6 CUSTOMIZING THE DK GUI.. 23
2.6.1 Customizing windows .. 23
2.6.2 Customizing toolbars ... 24
2.6.3 Customizing menus ... 25

3 MENUS AND COMMANDS .. 26
3.1 FILE MENU.. 26

3.1.1 New dialog (File>New)... 26
3.2 EDIT MENU ... 27

3.2.1 Find commands .. 27
3.2.2 Finding using regular expressions.. 28
3.2.3 Bookmarks... 28
3.2.4 Breakpoints dialog .. 29
3.2.5 Using browse commands.. 31

3.3 VIEW MENU .. 32
3.4 PROJECT MENU .. 32

3.4.1 Project settings... 33

DK Design Suite user guide

www.celoxica.com Page 2

3.5 BUILD MENU ... 33
3.5.1 Selecting a configuration.. 34

3.6 DEBUG MENU... 34
3.7 TOOLS MENU ... 35

3.7.1 Source browser .. 35
3.7.2 Customize Toolbars... command.. 36
3.7.3 Tools Options dialog .. 36

3.8 WINDOW MENU ... 38
3.8.1 Windows dialog... 38

3.9 HELP MENU... 39
3.10 KEYBOARD SHORTCUTS .. 39

4 PROJECT DEVELOPMENT... 43
4.1 PROJECT TYPES.. 43

4.1.1 Creating a project ... 43
4.2 MANAGING PROJECT FILES.. 44

4.2.1 What files are generated for a project?... 44
4.2.2 Adding files to a project ... 45
4.2.3 Multi-file projects .. 46
4.2.4 Linking multiple files.. 46
4.2.5 Removing files or folders from a project ... 47
4.2.6 Search paths for project files .. 48

4.3 WORKSPACE AND PROJECT DIRECTORIES 48
4.3.1 Adding an existing project to a workspace .. 48

4.4 CONFIGURING A PROJECT ... 48
4.4.1 Defining project configurations.. 49
4.4.2 Complex projects .. 49

4.5 PROJECT AND FILE DEPENDENCIES.. 50
4.5.1 File dependencies.. 50
4.5.2 Project dependencies... 51
4.5.3 External dependencies ... 51

4.6 PROPERTIES DIALOG ... 51
4.6.1 General tab.. 51
4.6.2 Inputs tab.. 52
4.6.3 Outputs tab.. 52
4.6.4 Dependencies tab ... 53

4.7 PROJECT AND FILE SETTINGS... 53
4.7.1 Independent settings for files ... 54
4.7.2 General tab.. 54
4.7.3 Debug tab.. 56
4.7.4 Preprocessor tab... 56
4.7.5 Synthesis tab ... 57
4.7.6 Optimizations tab.. 59
4.7.7 Chip tab (Project settings).. 60
4.7.8 Linker tab .. 60
4.7.9 Build commands tab (Project settings) ... 62

DK Design Suite user guide

www.celoxica.com Page 3

4.7.10 Library tab ... 62

5 BUILDING A PROJECT.. 64
5.1 BUILD PROCESS ... 64

5.1.1 Running the compiler... 64
5.1.2 Setting up code for debug .. 65
5.1.3 Building and compiling for debug... 65
5.1.4 Building with library and object files .. 66
5.1.5 Preparing to build for hardware... 66
5.1.6 Compiling for release or target.. 67
5.1.7 Report files .. 67

5.2 BUILD COMMANDS IN DK ... 72
5.2.1 Simulator compilation command lines .. 73
5.2.2 Generating a standalone executable .. 74
5.2.3 Generating an .obj file ... 74
5.2.4 Post-build commands .. 75

5.3 CUSTOM BUILD COMMANDS... 75
5.3.1 Specifying a custom build... 76
5.3.2 Build commands, outputs and dependencies ... 76
5.3.3 File and directory macros ... 77

6 COMMAND LINE COMPILER ... 80
6.1 SUMMARY OF COMMAND LINE OPTIONS .. 80
6.2 COMPILER TARGET OPTIONS.. 82
6.3 PASS OPTIONS TO PREPROCESSOR.. 83
6.4 OPTIMIZER OPTIONS... 84
6.5 COMPILER DEBUGGING OPTIONS .. 85

6.5.1 Targeting the simulator.. 85
6.5.2 Detecting simultaneous access to functions, memory and channels 86

6.6 SIMULATION COMPILATION CONTROL OPTIONS................................ 86
6.6.1 Pass options to command line... 86
6.6.2 Pass options to backend compiler .. 87

6.7 ENVIRONMENT VARIABLES.. 88

7 SIMULATION AND DEBUGGING .. 89
7.1 USING THE SIMULATOR.. 89

7.1.1 Starting debug and simulation .. 89
7.1.2 Debug symbols in the editor window.. 90
7.1.3 Selecting a clock... 90
7.1.4 Selecting a thread to follow .. 90
7.1.5 Following function calls in the Call Stack window 91
7.1.6 Examining variables .. 91

7.2 USING THE DEBUGGER ... 92
7.2.1 Generating debug information... 92
7.2.2 Debug project configuration.. 92
7.2.3 Stepping through code... 93

DK Design Suite user guide

www.celoxica.com Page 4

7.2.4 Advancing through code... 94
7.2.5 Arrow behaviour during step and advance .. 95
7.2.6 Using breakpoints ... 96

8 OPTIMIZING CODE ... 99
8.1 LOGIC ESTIMATOR .. 99

8.1.1 Logic area and depth summary ... 99
8.1.2 Area and delay estimation example ... 100
8.1.3 Information on logic area ... 101
8.1.4 Information on combinatorial paths and delay ... 102

8.2 OPTIMIZING CODE EXAMPLE...103
8.2.1 Optimizing code example: original program .. 104
8.2.2 Building the optimizing code example .. 104
8.2.3 Optimizing code example: stage 1... 105
8.2.4 Optimizing code example: stage 2... 106

9 TARGETING HARDWARE ..108
9.1 TARGETING A PARTICULAR SYNTHESIS TOOL108
9.2 ALU MAPPING..108
9.3 TECHNOLOGY MAPPING...109
9.4 RETIMING ...110

9.4.1 How retiming works .. 111
9.5 OPTIMIZING ARITHMETIC HARDWARE IN ACTEL DEVICES127
9.6 TARGETING HARDWARE VIA EDIF...127

9.6.1 EDIF block and net names.. 127
9.6.2 Specifying wire name format in EDIF ... 130
9.6.3 Setting up place and route tools.. 130
9.6.4 Preparing MaxPlus II to to compile Handel-C EDIF 131
9.6.5 Preparing Quartus to compile Handel-C EDIF... 131
9.6.6 Importing timing constraint files into Actel Designer................................. 133

9.7 TARGETING HARDWARE VIA VHDL..133
9.7.1 VHDL file structure .. 134
9.7.2 Naming of VHDL files and entities.. 135
9.7.3 Mapping Handel-C functions to VHDL entities .. 136

9.8 TARGETING HARDWARE VIA VERILOG...138
9.8.1 Verilog file structure .. 138
9.8.2 Naming of Verilog files and modules .. 140
9.8.3 Mapping Handel-C functions to Verilog modules....................................... 141

10 TUTORIAL EXAMPLES ...143
10.1 EXAMPLE 1: ACCUMULATOR EXAMPLE...143

10.1.1 Compiling and simulating example 1 .. 143
10.2 EXAMPLE 2: PIPELINED MULTIPLIER EXAMPLE144

10.2.1 Example 2: Index array test code details .. 144
10.2.2 Compiling and simulating example 2 .. 145

10.3 EXAMPLE 3: QUEUE EXAMPLE...145

DK Design Suite user guide

www.celoxica.com Page 5

10.3.1 Example 3: detailed explanation.. 146
10.3.2 Compiling and simulating example 3 .. 146

10.4 EXAMPLE 4: CLIENTS / SERVER EXAMPLE147
10.4.1 Example 4: code details ... 148
10.4.2 Compiling and simulating example 4 .. 149

10.5 EXAMPLE 5: MICROPROCESSOR EXAMPLE....................................149
10.5.1 Example 5: microprocessor description... 150
10.5.2 Compiling and simulating example 5 .. 150

10.6 EXAMPLE 6: CLOCK MANAGER EXAMPLE.......................................151
10.6.1 Example 6: description of program .. 151
10.6.2 Compiling example 6 ... 153

11 PORTING C TO HANDEL-C ..154
11.1 STAGES IN PORTING C TO HANDEL-C...154

11.1.1 Deciding how the software maps to the hardware 154
11.1.2 Converting the program from C to Handel-C.. 154
11.1.3 Using the extra operators available in Handel-C..................................... 154
11.1.4 Adding fine grain parallelism... 155
11.1.5 Adding hardware interfaces .. 155

11.2 PORTING C TO HANDEL-C: EDGE DETECTOR EXAMPLE....................155
11.2.1 The original program ... 155
11.2.2 Stage 1: First pass conversion to Handel-C ... 156
11.2.3 Stage 2: First optimizations of the Handel-C program............................. 157
11.2.4 Stage 3: Adding fine grain parallelism .. 158
11.2.5 Stage 4: Further fine grain parallelism ... 161
11.2.6 Stage 5: Adding hardware interfaces.. 162

12 INTEGRATING C/C++ FILES...166
12.1 CALLING C/C++ FUNCTIONS FROM HANDEL-C............................166
12.2 COMPILING AND LINKING IN A C/C++ FILE................................167

12.2.1 Build commands to compile C/C++ files ... 167
12.3 CALLING HANDEL-C FUNCTIONS FROM C/C++............................168

12.3.1 Calling Handel-C functions from C/C++: example 168
12.3.2 Calling Handel-C functions from C++: tutorial 169

12.4 USING EXTERN C: BITONIC SORT EXAMPLE170
12.4.1 Compiling and simulating the bitonic sort example 170

12.5 PORTING C++ TO HANDEL-C: HDLC EXAMPLE171
12.5.1 Description of the HDLC example... 171
12.5.2 Compiling and simulating the HDLC example... 172

13 INTEGRATING HANDEL-C WITH VHDL, VERILOG AND EDIF175
13.1 RESET ON CONFIGURATION..175
13.2 INTEGRATING WITH VHDL BLOCKS ...176

13.2.1 Linking to the Handel-C VHDL library ... 176
13.2.2 Writing Handel-C code to integrate with VHDL code................................ 176
13.2.3 Example: VHDL within a Handel-C project... 178

DK Design Suite user guide

www.celoxica.com Page 6

13.2.4 Example: Handel-C in a VHDL project .. 179
13.2.5 Synthesizing Handel-C with external VHDL.. 181
13.2.6 Connecting Handel-C EDIF to VHDL ... 181

13.3 INTEGRATING WITH VERILOG BLOCKS ..181
13.3.1 Linking to the Handel-C Verilog library ... 182
13.3.2 Writing Handel-C code to integrate with Verilog code.............................. 182
13.3.3 Example: Verilog in a Handel-C project .. 183
13.3.4 Example: Handel-C in a Verilog project .. 185
13.3.5 Synthesizing Handel-C with external Verilog.. 186
13.3.6 Connecting Handel-C EDIF to Verilog ... 187

13.4 INTEGRATING WITH EDIF BLOCKS ..187
13.4.1 Connecting Handel-C EDIF to external EDIF .. 187
13.4.2 Writing Handel-C code to integrate with external EDIF............................ 188
13.4.3 Example: Handel-C in an EDIF project.. 189
13.4.4 Example: EDIF component in a Handel-C project 191

13.5 EXAMPLES: INTEGRATING HANDEL-C WITH VHDL, VERILOG AND EDIF193
13.5.1 Integration examples: running .. 193

13.6 EXAMPLES OF INTERFACING TO VHDL..194
13.6.1 Combinational circuit example: VHDL... 194
13.6.2 Register bank example: VHDL... 195
13.6.3 FIR filter example files: VHDL ... 196

13.7 EXAMPLES OF INTERFACING TO VERILOG.....................................198
13.7.1 Combinational circuit example: Verilog ... 199
13.7.2 Register bank example: Verilog ... 200
13.7.3 FIR filter example files: Verilog ... 200

13.8 EXAMPLE OF INTERFACING TO EDIF ..202
13.8.1 FIR filter example files: EDIF .. 203

14 UTILITIES...205
14.1 BMP2RAW UTILITY ..205

14.1.1 RGB example file... 206
14.1.2 bmp2raw RGBFile example ... 207
14.1.3 bmp2raw RGB description file format ... 207

14.2 RAW2BMP UTILITY ..207
14.2.1 RGBFile worked example .. 208
14.2.2 raw2bmp RGBFile format.. 209
14.2.3 raw2bmp RGBFile example ... 210

15 TROUBLESHOOTING...211
15.1 TROUBLESHOOTING ...211

15.1.1 Updating to DK 2 .. 211
15.2 TROUBLESHOOTING: MULTIPLE CLOCK DOMAINS212
15.3 TROUBLESHOOTING: FIFOS ..212
15.4 ERROR MESSAGES..213

15.4.1 DK environment error messages.. 219
15.5 WARNING MESSAGES ...220

DK Design Suite user guide

www.celoxica.com Page 7

16 INDEX..223

DK Design Suite user guide

www.celoxica.com

Conventions
A number of conventions are used in this document. These conventions are detailed
below.

Warning Message. These messages warn you that actions may damage your hardware.

Handy Note. These messages draw your attention to crucial pieces of information.

Hexadecimal numbers will appear throughout this document. The convention used is
that of prefixing the number with '0x' in common with standard C syntax.

Sections of code or commands that you must type are given in typewriter font like this:
 void main();

Information about a type of object you must specify is given in italics like this:
 copy SourceFileName DestinationFileName

Optional elements are enclosed in square brackets like this:
 struct [type_Name]

Curly brackets around an element show that it is optional but it may be repeated any
number of times.
 string ::= "{character}"

DK Design Suite user guide

www.celoxica.com

Assumptions & Omissions
This manual assumes that you:

• have used Handel-C or have the Handel-C Language Reference Manual

• are familiar with common programming terms (e.g. functions)

• are familiar with MS Windows

This manual does not include:

• instruction in VHDL or Verilog

• instruction in the use of place and route tools

• tutorial example programs. These are provided in the Handel-C User Manual

DK Design Suite user guide

www.celoxica.com Page 10

1 Getting started with DK

1.1 Starting DK

To start the DK, do one of the following:

• Select Start>Programs>DK Design Suite>DK

• Double-click on an existing DK workspace file (files with the extension .hw)

• Double-click the DK icon on the desktop

1.2 Creating a new file

1. Select File>New, and click the Source File tab.

2. Select the type of file you want to create in the left-hand pane. (Note that the
default is a text file.)

3. Check the Add to project box if you want to add the file to an existing project.
Select one of the projects in your current workspace from the drop-down box.

4. Type the name of the file in the Filename box. You do not need to add a file
extension if you have set the file type.

5. Set the location (the directory path where the file is stored), by typing the
path name in the box, or by selecting a directory by clicking the … button.

6. Press OK.

7. The code editor window opens.

1.3 Writing source code

You write Handel-C source code in the source code editor. Code is indented at the same
level as the line above it and is syntax highlighted.

Having a file open in the source code editor does not mean that it is part of your project.
The only files that will be compiled and built are those that you have added to your
project.

1.4 Build configuration types

There are several default types of configuration that you can select from to build your
application:

DK Design Suite user guide

www.celoxica.com Page 11

• Debug (default)

• Release

• Generic (This option is only available for library projects)

• VHDL (This option is not available in Nexus PDK.)

• Verilog (This option is not available in Nexus PDK.)

• EDIF (This option is not available in Nexus PDK.)

Debug mode is used to build a configuration that can be simulated and debugged on the
PC. In debug mode, you can view the contents of registers and step through the
program’s source code.

Release mode creates compiled code that has no debug messages and can be used in
another program. Release mode can also be used for high-speed simulation.

Generic mode is used to create Handel-C intellectual property (libraries) which are not
targeted at a particular output format. It creates compiled code that has no debug
messages and can be used in another program. Generic mode can be linked for
simulation, EDIF 2.0.0, Verilog IEEE Std 1364-1995 or VHDL 1987.

In EDIF mode, you get a list of gates, ready to be placed and routed on a device.

In VHDL mode, you get a collection of VHDL files, which can be simulated using any
VHDL simulator (such as ModelSim) and synthesized and placed and routed using the
appropriate RTL tools.

In Verilog mode, you get a collection of Verilog files, which can be simulated using any
Verilog simulator (such as ModelSim) and synthesized and placed and routed using the
appropriate RTL tools.

You can also define your own configuration types to store a particular set of project
settings.

1.5 Project development sequence

The normal development sequence for a single-chip project is:

1. Create a new project.

2. Configure the project.

3. Add empty source code files to the project.

4. Create source code.

5. Link to any required libraries.

6. Set up the files for debug.

7. Compile the project for debug.

8. Use the debugger and simulator.

9. Optimize the project.

DK Design Suite user guide

www.celoxica.com Page 12

10. Compile the project for the target chip. (This step is not available in Nexus
PDK.)

11. Export the target file to a place and route tool.

12. Place and route. There is no information on placing and routing within the DK
documentation. Consult your place and route tool’s documentation.

DK Design Suite user guide

www.celoxica.com Page 13

2 Windows and Toolbars
The DK environment is a standard Windows development environment with dockable
windows and customizable toolbars. The environment is in four main parts.

Workspace window The area where you organize each project: the files you
need, plus information about the target. When you start
DK, the default position of the window is on the left.

Code editor window Where you create and edit Handel-C source files. When
you create or open a file, the default position of the
window is on the right.

Output window The area that displays error messages and warnings when
you compile a file. The default position of the window is at
the bottom of the screen. The output window has tabs for
build messages and debug messages.

Debug windows Windows which show information when you simulate the
operation of a compiled program. The View>Debug Windows
command determines which windows are displayed.

The simulation steps the program through clock cycles,
and allows you to look at the contents of any variables
that are in scope. These are displayed in the Variables
window.

You can select variables to display in the debug Watch
window. The default position of the Watch window is the
bottom left-hand corner of the screen.

The call stack (the route by which you have called a
function) is displayed in the Call Stack window.

You can see clock cycles and current executing threads in
the Clocks/Threads window.

2.1 Workspace window

The Workspace window contains workspaces and projects.

A workspace is allows you to organize the files that you need for each project. You would
generally use one workspace per system (a system describes the hardware configuration
that you are targeting).

A project consists of everything you need to create one or more netlist files ready to be
placed and routed on a device, together with the project settings. Project settings
provide information about where the files for the project are stored, the target chip for
the project, how the compilation will work, and optimization requirements.

The Workspace window has two views:

DK Design Suite user guide

www.celoxica.com Page 14

• File view

• Symbol view

2.1.1 File view

File view shows the workspace, its projects, and their source files and folders. The
current project name is in bold.

File view shows the structure of files in the project, not how they are stored on disk. It
allows you to set up dependencies (what files are needed for this project, and what files
or projects they depend upon) and to manage your project.

• Double-click on a source file name to open the file in the code editor. Double-
clicking on anything else expands or contracts that branch of the workspace
tree.

• Right-click on a file name or directory to display a menu of commonly used
options.

Context menu - File View window

The context menus in the File View window are accessed by right-clicking on a file or
project.

Context menu for files

Item Description

Open Opens file in Code Editor window

Compile Compiles file

Delete Removes file from project

Settings Opens Project Settings dialog. Allows you to specify file settings.

Properties Opens Properties dialog. Displays information and allows you to change the
language specified for the file.

DK Design Suite user guide

www.celoxica.com Page 15

Context menu for projects

Item Description

Build Builds the selected project

Clean Deletes all the files that are created by building the project (doesn't affect
source files)

New Folder Allows you to specify the name of a new folder, and the extensions of the
files associated with it

Add files to
Folder

Allows you to add files to the project

Set as Active
Project

Sets selected project to be the active one

Settings Opens Project Settings dialog

Properties Opens Properties dialog

File view icons

 DK workspace (.hw file)

 DK system project (.hp file)

 DK board project (.hp file)

 DK chip project (.hp file)

 DK core project (.hp file)

 Library project (.hp file)

 Handel-C source file (.hcc file)

 Handel-C header file (.hch file)

 C++ source file (.cpp file)

 ANSI-C source file (.c file)

 C/C++ header file (.h file)

 Text file (ile) .txt f

 Folder

 Folder (open)

DK Design Suite user guide

www.celoxica.com Page 16

2.1.2 Symbol view

A symbol is a logical or architectural construct that you define such as a function,
variable, macro, typedef or enum. Symbol view allows you to see the logical content of a
project.

• To create the symbol view, build the project with the option Save browse info (-b)
enabled in the project settings (Linker tab, or Library tab for a library project).
This option is set by default in the Debug configuration.

• To see the symbol view, select the Symbol View tab in the Workspace window.

Symbol view shows a tree of icons representing the logical and architectural components.
Each icon is identified by its definition and use (references). External symbols (external
variables and function names) appear in alphabetical order. Local symbols appear in
alphabetical order within the function or procedure where they are defined.

Double-click on a symbol to expand it, or (if it is not expandable) to open the relevant
source code file with the appropriate line tagged.

Symbol view icons

Icon Meaning

 Shared function, procedure or expression

 In-line function or macro

 Variable

 Memory (RAM, ROM, WOM or MPRAM)

 Channel (chan, chanin or chanout)

 External interface

 Semaphore (sema)

 Signal

 Stacked position containing the related object (e.g. recursive macro)

 Position in the file containing the definition of the object

2.2 Code editor window

 window. If you right-click in the
tor window, you get a context-sensitive menu.

The code editor is a simple editor that resides in its own
code edi

DK Design Suite user guide

www.celoxica.com Page 17

2.2.1 Code editor icons

 Current active point

 Other statements executed in current thread on current clock cycle

 Active point in different thread

 Position of current error/browse symbol

 Enabled breakpoint(s) on this line

 Disabled breakpoint(s) on this line

 Enabled and disabled breakpoint(s) on this line

 Bookmark on this line

2.2.2 Context menu - code editor window

ed

o line break (after using Undo)

indow

point Allows you to specify which lines of code the simulator will pause at

s colour coded.

The default colour codes are:

Item Description

Undo Removes the last word or line break that you typ

Red Restores a word or

Cut Cuts selected text

Copy Copies selected text

Paste Pastes text copied from elsewhere

Select All Selects everything in the Code editor w

Toggle Bookmark Allows you turn bookmarks on and off

Insert Break

2.2.3 Syntax colour codes

The syntax in a displayed file i

DK Design Suite user guide

www.celoxica.com Page 18

green: comments

blue: Handel-C and supported C/C++ keywords

red: unsupported C/C++ keywords

brown: number

brown: string
purple: operator

You can change the colour codes by selecting the Format tab from the Tools>Options dialog
box.

2.3 Output window icons

 Information User assert statement

 Warning about your program

 Error in your program Position stack

 Internal error in the compiler Position

2.4 Debugger interface

The debugger interface consists of the debug windows and menu commands, and their
associated buttons. When you start a simulation, the Debug menu appears. You use the
Debug menu commands to control the simulation.

Debug information is presented in the following windows. To open or close windows, use
the following shortcuts or use the View>Debug Windows menu options.

DK Design Suite user guide

www.celoxica.com Page 19

Window Shortcut Function

Code editor Appears
by default

The editor window for the source code that you are
debugging. Its title will be the file name. The code is marked
by debug symbols to show the current execution points and
breakpoints.

Call Stack Alt+7 Shows the calling path to the current function.

Clocks/Threa
ds

Alt+5 Identifies all current threads, and allows you to select one to
follow. Also identifies each clock in use, and allows you to
view its definition in the code.

Variables Alt+4 Shows the variables used in the latest statements in the
current thread, and those local to the current macro or
function.

Watch Alt+3 Showing the contents of variables that you select. You select
the variables to show on four separate tabs

2.4.1 Debug buttons and icons

Buttons

 Restart Stop debugging

 Break

 Step into Alt+7 Show/hide the Call Stack window

 Step over Alt+5 Show/hide the Clock/Threads window

 Step out Alt+4 Show/hide the Variables window

 Run to cursor Alt+3 Show/hide the Watch window

 Advance Alt+0 Show/hide the Workspace window

Icons

 Clock in Clocks/Threads window

 Thread in Clocks/Threads window

DK Design Suite user guide

www.celoxica.com Page 20

2.4.2 Call Stack window

During debug the Call Stack window lists the functions and macro procedures called on the
way to the current function. The current function or macro procedure appears at the top
of the list, followed by those that have not yet completed. You can open the Call Stack
window by selecting View>Debug Windows>Call Stack or clicking the Call Stack window button

2.4.3 Clocks/Threads window

operat

• cks/Threads window, select View>Debug windows>Clocks/Threads, or

 s

Clock/Thread e executing on it.

The Clocks/Threads window shows a tree view of the simulators, clocks and threads in
ion during debug. Entries for the current clock and thread appear in bold type.

To open the Clo
press Alt + 5.

Details are hown in three columns.

Identifies each clock and the threads that ar

 Clock entry is in the form clockno line
clockno is the number used by the simulator to identify the clock

t-click on the clock icon and select Show Definition
line is the source file name and line where the clock is defined.

To view the definition, righ
from the shortcut menu.

 Thread entry is in the form threadno context
threadno is the number used by the simulator to identify the thread
context indicates the source code context in which the thread executes.

h two options:

read

Location e source code file name and line number currently executing in the
thread.

Right-click on the thread icon to display a menu wit

Show Location to view the source code for the thread

Follow Thread to make the selected thread the current th

Cycles Shows the number of cycles executed for each clock.

Shows th

DK Design Suite user guide

www.celoxica.com Page 21

SAMPLE CLOCKS/THREADS WINDOW

2.4.4 Variables window

The Variables window shows the variables that are important in the program's current
context. When their values change, the colour changes from black to red. Only the last
value to change will be shown in red. You can open the Variables window by selecting
View>Debug Windows>Variables or clicking the Variables window button

You can change the base that variables are displayed in by right-clicking the Variables
window and selecting a new base. Binary format variables are displayed with leading
zeroes. You can also change the default base for variables in the Variables window:
select Tools>Options>Debug, and set the required base in the Base for numbers box.

The default maximum number of elements displayed in the Variables window is 16. To
change this, select Tools>Options>Debug, and change the number in the Maximum number of
visible elements box. If you increase the number of elements, the simulation will be slower.

The Variables window has two tabs, Auto and Locals.

• The Auto tab shows variables that have been automatically selected. These are
variables used in the current statement and in the previous statement. (If you
have just swapped threads, the "previous statement" will be the last one you
looked at in the other thread.)
Variables that have changed since the previous step are shown in red. The Auto
tab also displays return values when you come out of or step over a function.
If you switch threads, you will see variables from the previous step in the
other thread.

• The Locals tab shows the variables that are in scope in the current function or
macro.

DK Design Suite user guide

www.celoxica.com Page 22

2.4.5 Watch window

The Watch window has four tabs:

Each goes to a different Watch window. You can select variables to be displayed in each
window, and look at their values at any breakpoint or as you step through the program.

The default maximum number of elements displayed in the Watch window is 16. To
change this, select Tools>Options>Debug, and change the number in the Maximum number of
visible elements box. If you increase the number of elements, the simulation will be slower.

You can add a variable to the Watch window by typing its name.

You can delete a variable from the Watch window by selecting its name and deleting it.

You can change the base that variables are displayed in by right-clicking the Watch
window and selecting a new base. Binary format variables are displayed with leading
zeroes. You can also change the default base for variables in the Watch window: select
Tools>Options>Debug, and set the required base in the Base for numbers box.

The Watch window has an expression evaluator. If you type in an expression, it will be
evaluated and the result will be displayed. It cannot display expressions containing:
function calls, let, select, trysema, strings, &, assert.

2.5 Toolbars

When you start DK, toolbars appear under the menu bar.

Standard toolbar

Build toolbar

Browse toolbar

Debug toolbar

DK Design Suite user guide

www.celoxica.com Page 23

Edit toolbar

2.5.1 Standard toolbar buttons

2.5.2 Status bar

The sta s e bottom of the DK window. It displays:

• fo when the mouse is over them

• e number within the current code editor window

• Keyboard states

• NUM : Num lock on

You can toggle its display by selecting View>Status bar.

2.6.1 u

The DK

• How document windows are laid out (this is specific to each workspace)

Document an resize them and drag
them abou

The buttons on the standard toolbar give a subset of options from the File, Edit and View
menus.

tu bar is visible at th

In rmation about items

Th current line and column

• Status and progress messages

• CAP : Caps lock on

• SCRL : Scroll lock on
• OVR : Overwrite on (i.e. insert key pressed)

2.6 Customizing the DK GUI

 C stomizing windows

 user interface has standard scrollable windows.

You can customize:

• The position and size of the workspace, code editor, output and debug
windows. The settings will affect all DK projects.

Re-sizing windows

 windows are movable within the DK window. You c
t.

DK Design Suite user guide

www.celoxica.com Page 24

Docking windows can either be docked at one of the window margins, or can float above

tle bar to

Splitting windows

You can split a text window in two ways:

• Use the Split command on the Window menu

 box (shown in the graphic below). It is the small box

the other windows.

• To float a docked window, double-click its border.

• To dock a floating window, either double-click its border, or drag its ti
a docking position.

• Drag the split
immediately above the vertical scroll bar in the text window:

Full screen display

The Full Screen command on the View menu displays the code editor pane at maximum
The normal menu bars and toolbars are not visible. To return

 size.
to a normal view, click the

Close Full Screen button .

2.6.2 Customizing toolbars

ustomize dialog allows you to add or remove buttons on any

buttons on a toolbar

e and

from a toolbar, drag the button off the toolbar.

To rese
Toolbars tab the toolbar name in the Toolbars list and click the Reset button.

Placing toolbars

 can be docked at one of the edges of the DK

The Command tab in the C
toolbar. The right-hand pane displays the buttons available.

Adding or removing

Select Tools>Customize Toolbars, and then select the Toolbars tab.

To add a button to a toolbar, select the button from the Commands right-hand pan
drag it to the toolbar.

To remove a button

Restoring a toolbar

t a toolbar to its previous state, select Tools>Customize Toolbars and then select the
. Select

The toolbars in DK are dockable. They
window, or they can float.

DK Design Suite user guide

www.celoxica.com Page 25

• You
on it

You bar.

hanging toolbar appearance

Toolbars tab in the Customize dialog allows you to change the display of toolbars.

 to display it, uncheck it to hide it.

r is

Check this to make the buttons appear two-dimensional

2.6.3

e Command tab in the Customize dialog allows you to add buttons to the toolbar and

o add a menu to the menu bar:

1. From the Categories list select Menu.
2. Select the menu name from the right-hand list and drag it to the menu bar.

If you drag a menu name to a toolbar, it appears as a button. If you drag it to an empty
area, it appears as a new floating window.

To remove a menu from the menu bar, drag the menu name off the menu bar.

can change a toolbar from docked to floating and back by double clicking
.

• can move a toolbar by dragging the title bar or the double

C

The

Check a toolbar in the toolbar pane

Show Tooltips Check this to popup the purpose of a button when your mouse curso
over it

Cool Look
Large Buttons Check this to increase the button size

 Customizing menus

Th
menus to the menu bar. The right-hand pane displays the buttons and menu commands
available.

Select Tools>Customize Toolbars, and then select the Command tab.

T

DK Design Suite user guide

www.celoxica.com Page 26

3 Menus and commands

3.1 File menu

Command Shortc
ut

Function

 New… Ctrl+N Display the New dialog to create:
• A project

• A file

• A workspace

 Open… Ctrl+O Display the File Open dialog

 Save Ctrl+S Save the active document

 Print Ctrl+P Print the active document

 Save As… Save the active document under a new name

 Save All Saves all active documents.

 Page Setup Set up for printing

 Open
Workspace

 Display the Workspace Open dialog

 Close
Workspace

 Close the current workspace

 Save
Workspace

 Save the current workspace

 Recent Files> List of recently used files. Select one to open it.

 Recent
Workspaces>

 List of recently used workspaces. Select one to open it.

 Exit Quit DK

3.1.1 New dialog (File>New)

The New dialog allows you to create

• new files

• new projects

• new workspaces

DK Design Suite user guide

www.celoxica.com Page 27

3.2 Edit menu

Command Shortcut Function

 Undo Ctrl+Z Reverse a recent change to the active document or to
the workspace

 Redo Ctrl+Y Reverse a recent undo

Cut Ctrl+X Copy the current selection to the clipboard and delete

it

 Copy Ctrl+C Copy the current selection to the clipboard

Paste Ctrl+V Copy the contents of the clipboard to the current

selection
 Delete Del Delete the current selection

Find Ctrl+F Find a string or regular expression in the current file.

Use F3 to Find next occurrence, Shift F3 to find
previous occurrence.

Find in files… Find a string or regular expression in selected files

 Replace Ctrl+H Replace one string or regular expression with another
in current file

 Bookmarks> Set, remove or move through bookmarks in the
document

 Breakpoints… Alt+F9 Display the project’s breakpoints dialog box

 Browse> Find definitions and references for variables or other
symbols in the document

3.2.1 Find commands

DK has simple Find and Replace commands that allow you to search for text in the current
file, and the Find in Files command, which allows you to search for a string in all the files in
a directory. The shortcut F3 finds the next occurrence, and Shift F3 finds the previous
occurrence.

The output from Find in Files can be sent to two different window panes, allowing you to
view the results of two searches. To choose which pane is selected, check or uncheck the
Output to pane 2 box in the Find in Files dialog.

These searches work line by line. Therefore you cannot match text that spans more than
one line.

You can also search using regular expressions. To do this, check Regular expression in the
Find or Find in Files dialog box.

DK Design Suite user guide

www.celoxica.com Page 28

3.2.2 Finding using regular expressions

You can search files for text by using regular expressions. To do this, check Regular
expression in the Find or Find in Files dialog box. You can use any of the expressions listed
below.

Regular
expression

Description

(x) The characters or expressions between the parentheses.
. (Period.) Any single character.
^ Start of line.
$ End of line.
\t Tab character.
x|y A match for either x or y. For example, a(team|class) will match either

ateam or aclass.

x* Zero, one or many copies of x. For example, ba*c matches bac, baac,
baaac and bc.

x? None or one x. For example, ba?c matches bac or bc.
x+ At least one or more of x. For example, ba+c matches bac, baac, baaac,

but not bc.

[xyz]
[x-y]

Matches one character from the set in the brackets. Use a dash (-) to
include all characters in a range; for example, [_A-Za-z] matches an
underscore or any letter, and [_A-Za-z][_A-Za-z0-9]* matches an
alphanumeric string that can include underscores. Use [xyz-] or [-xyz] if
you want to include a dash in the set. If you need a] in the set use []
xyz].

[^xyz] Matches one character that is not in the brackets. For example, x[^0-9]
matches xa, but not x0 or x2.

\x Matches the character x, even if x is one of the characters ^\$[].*+?
listed above. For example, ^pig matches pig at the start of a line, but
\^pig matches the string ^pig anywhere on a line.

3.2.3 Bookmarks

The Bookmarks submenu in the Edit menu allows you to set and clear bookmarks within
files.

Once you have set one or more bookmarks in a file, you can move through the
bookmarks by selecting Next Bookmark (F2) or Previous Bookmark (Shift F2).

DK Design Suite user guide

www.celoxica.com Page 29

Setting bookmarks

1. Select the line where you wish to place the bookmark.

2. Press the Toggle Bookmark button

OR

Right-click the line and select Toggle Bookmark from the shortcut menu

OR

Select Edit>Bookmarks>Toggle Bookmark (Ctrl F2).

Moving to a bookmark

To move forward through the
bookmarks

Select Edit>Bookmarks>Next Bookmark (F2)
or

press the Next Bookmark button

To move backwards through the
bookmarks

Select Edit>Bookmarks>Previous Bookmark (Shift F2)
or

press the Previous Bookmark button

Clearing a

1. Select the line where you wish to clear the bookmark.

2. s the Toggle Bookmark button

bookmark

Pres

OR

Right-click the line and select Toggle Bookmark from the shortcut menu

Select Edit>Bookmarks>Toggle Bookmark (Ctrl + F2).

rks in a file

To clear all bookmarks:

• ct Edit>Bookmarks>Clear All Bookmarks (Ctrl + Shift + F2)

• Press the Clear All Bookmarks button

OR

Clearing all bookma

Sele

OR

Edit>Breakpoints command. The dialog
gives a list of currently set breakpoints. You can:

3.2.4 Breakpoints dialog

The Breakpoints dialog appears when you select the

DK Design Suite user guide

www.celoxica.com Page 30

• View all breakpoints

nt is set

reakpoint

• Edit a breakpoint

ns, it displays a list of all current breakpoints, identified by file

eakpoint in the breakpoint list and click Remove. To delete all breakpoints, click
.

k

On condition:

= 0. Note

On repetition:
r

, the breakpoint will be triggered on the 6th

w many times a
condition should be passed before it is active.

akpoint, clear the box by its entry in the list of breakpoints. To enable it,

 the breakpoint in the list and click the Edit code button.

r
ox. This allows you to have two breakpoints on

fferent conditions.

• Delete breakpoints

• Make a breakpoint conditional

• Disable or enable a breakpoint

• View code where the breakpoi

• Add a (duplicate) b

Viewing all breakpoints

When the dialog box ope
name and line number.

Deleting breakpoints

Select a br
Remove All

Making brea points conditional

Select the breakpoint in the breakpoint list and enter the condition on
which it will be active in the Break when box. This condition can be any
valid Handel-C expression. For example, y == 4 or x[7]!
that statements are not allowed, so you cannot use y = 4.

Select the breakpoint in the breakpoint list and enter the number of
times that it must be passed before it is active in the Break after box. Fo
example, if you enter '5'
pass through the code.

You can also use the Break after box to specify ho

Disabling and enabling breakpoints

To disable a bre
check the box.

View code where breakpoint is set

Select

Add a (duplicate) breakpoint

Select the blank box at the end of the breakpoint list. Type the file name and line numbe
(separated by a comma) in the Break at b
the same line with di

DK Design Suite user guide

www.celoxica.com Page 31

Editing breakpoints

Select the breakpoint in the list. Edit the file name and line number in the Break at box.
The file name and line number must be separated by a comma, e.g. parmult.hcc,112.

3.2.5 Using browse commands

The Edit>Browse command allows you to find definitions of and references to selected
variables or other symbols. If you make a change to a variable, this is a quick way of
finding everywhere that the variable is used.

To find the definition of a variable or other symbol

1. Select the symbol name in an edit window.

2. Select Edit>Browse>Go to Definition or click the button.

To find the first reference to a variable or other symbol

1. Select the symbol name in an edit window.

2. Select Edit>Browse>Go to Reference or click the button.

To move through the references to and definitions of a variable or other
symbol

1. Select the symbol name in an edit window.

2. To move forward, select Edit>Browse>Next Definition Reference or click the
button.

3. backward, select > or click the To move Edit Browse>Previous Definition Reference
button.

Browse commands summary

If you select a symbol name in a source file, you can use the browse commands and
buttons to find its definitions and references in all the files used in a project. If the
symbol name is defined more than once, a

Resolve Ambiguity dialog appears, giving you the
list of symbols with that name, and which files they are in.

Button Command Function

 Go to Definition Jump to the source code line where the variable is defined

 Go to Reference Jump to the first source code line where the variable is used

 Previous Definition
/Reference

Jump to the previous definition or reference

DK Design Suite user guide

www.celoxica.com Page 32

 Next Definition
/Reference

Jump to the next definition or reference

3.3 View menu

omm ortcut

 Show/hide the status bar

 C and Sh Function

Status bar
 Full screen Show the code editor pane at maximum size

 Workspace Alt+0 Show/hide the Workspace window

 Output Alt+2 Show/hide the Output window

 dows>Debug Win Control the windows in the debugger

 Properties Alt+Enter Display the Properties dialog for the current file or
selection

3.4 Project menu

hortcut

ct> e to make current

ect>
Dependencies… rojects on which the project depends

Settings… Alt+F7 Open t P x to do one of these
tasks:

s for a file

nerated files

•

sert Project into
Workspace…

 Add a project to the workspace

Command S Function

Set Active Proje Select a project from the workspac

Add to Proj Add a file or folder to the project

Select p
he roject Settings dialog bo

• Use the logic estimator

• Create independent setting

• Set the output directory for ge

Set preprocessor settings

In

DK Design Suite user guide

www.celoxica.com Page 33

3.4.1 Project settings

Project settings define h
Project>Settings to see the

ow your files and projects are compiled and built. Select
 Project Settings dialog box. The different settings are available via

tabs. T able will depend on the project type. For example, the Library tab is
only av -type project.

The tabs available are:

is

rary

s in Project Settings have changed. There is a new Synthesis tab and the Compiler

he tabs avail
ailable for a library

• General

• Preprocessor

• Debug

• Synthes

• Optimizations

• Chip

• Linker

• Build commands

• Lib

If you can’t see the tab you want, then scroll the tabs by clicking on the arrows at the
end of the tabs. Some tabs may only be visible if you have selected a Handel-C file in the
left window.

The tab
tab has been removed. The Debugger tab is now called the Debug tab. Some of the options
are now on different tabs.

3.5 Build menu

Command Shortcut Function

 Compile Ctrl+F7

Run the compiler on the active document
(which must be a Handel-C code file), to
generate its .hco file.

 Build project F7 ll
t

ker on the
object files to make the .dll, .hcl, EDIF,
Verilog or VHDL files. (EDIF, VHDL and
Verilog are not available in Nexus PDK.)

Build this project: run the compiler on a
.hcc files that are newer than their objec
(.hco) files, then run the lin

 Stop Build Ctrl+Break Cancel a build in progress.

DK Design Suite user guide

www.celoxica.com Page 34

Rebuild All Rebuild all files in this project: like Build,
except that all .hcc files are compiled.

Clean Delete all the files that are created by
Build.

Start Debug Pop-up menu giving three options:

 Go F5 (Build project if not built.) Run the
simulator at full speed until a breakpoint or
other stop is reached.

 Step Into F11 (Build project if not built.) Run to the first
statement in the function or macro invoked
in the current line. If the current line is not
a function or macro invocation, run to the
next statement.

 Run to
Cursor

Ctrl+F10 (Build project if not built.) Run to the line
containing the text cursor.

Set Active Configuration Choose the active build configuration for
the current project.

Configurations… Add or remove configurations.

3.5.1 Selecting a configuration

Select Set Active Configuration from the Build menu. The Set Active Project Configuration dialog
appears. Select the configuration that you wish d click OK. to use, an

oject in De
o).

Function
3.6 Debug menu

The Debug menu appears when you build a pr bug mode and then start the
debugger by pressing F5 (Go) or F11 (Step int

Command Shortcut

 Go F5 Runs the simulator until it reaches a breakpoint or
other stop.

 Restart Ctrl+Shift+F5 Runs the simulator, starting at the first line of the
program.

 Stop Debugging Shift+F5 Stops the simulation.

 Break Pauses the simulation when it is running.

DK Design Suite user guide

www.celoxica.com Page 35

 Step Into F11 Moves to the end of the next clock edge executed
within the current thread, or to the next function
call, or to the next breakpoint. If the current line is a
function or macro call, it runs to the end of the clock
cycle invoked by the call.

 Step Over F10 If the current line is a function or macro call, it runs
to the end of the clock cycle after the function (steps
over the function). Else as for Step Into.

 Step Out Shift+F11 Executes the rest of a function or macro, and steps
to the end of the clock cycle after the line which
invoked the function (steps out of a function).

 Run to Cursor Ctrl+F10 Runs until the line containing the text cursor is
reached.

 Advance Ctrl+F11 Moves forward a single execution point rather than a
complete clock cycle.

3.7 Tools menu

Command Shortcut Function

Source Browser Alt+F12 Use the source browser dialog to find definitions and
references for variables and functions in your code.

Customize Toolbars… Customize your copy of DK: change the display of
toolbars, and add menus and buttons to toolbars and
the menu bar.

Keyboard Shortcuts… Redefine the available keyboard shortcuts.

Options… Set options for:
Editor; Tabs; Debug; Format; Workspace; Directories

3.7.1 Source browser

The Source Browser command allows you to search for names of variables and functions
in your code. It directs you to their definition and lists references to them.

1. Build your project (Press F7). You will need to re-build if you have changed
your code since a previous build.

2. From the Tools menu, select the Source Browser command.

3. In the Browse dialog box, enter the symbol name to view its definition and
references.

You can also browse for definitions and references using symbol view.

DK Design Suite user guide

www.celoxica.com Page 36

3.7.2 Customize Toolbars... command

The Customize Toolbars… command on the Tools menu allows you to change the DK user
interface in the following ways:

• Change the appearance of toolbars

• Add or remove toolbar buttons

• Add or remove menus and buttons on the menu bar

3.7.3 Tools Options dialog

Command Function

Editor Set the window options for the editor. Define when files are saved.

Tabs Define how tabs are handled and whether Auto-Indent is used.

Debug Set the default base used to display numbers in the debug windows.
This information is over-ruled by the Handel-C base specification.

Format Define the colour and font of text and markers in windows.

Workspace Set the number of recently opened workspaces in the workspace list.

Directories Set the directories that will be searched for and library files used in
projects.

Editor tab

Item Function when checked

Selection
margin

Use a selection margin in the editor window to enable you to view
breakpoints and debug symbols to the left of your source code.

Drag and drop
text editing

Edit by selecting an area, and dragging it to a new position

Save before
running tools

Save files before running tools defined in the Tools menu

Prompt before
saving files

Ask before saving

DK Design Suite user guide

www.celoxica.com Page 37

Format tab

Command Function

Category Select window type(s) to modify

Font Select font to display text in

Size Select display font size

Colours Select text type to modify:

Foreground: Set foreground colour

Background: Set background colour

Sample Display sample text in selected settings

Reset All Return to default settings

Workspace tab

Command Function

Default workspace list Set number of recent workspaces listed in the File>Recent Workspaces
command.

Tabs tab

Command Function

File type Define settings for specified file types or define default settings.

Tab size Equivalent number of spaces per tab

Insert
spaces/Keep tabs

Select whether to use spaces or tabs in file. Existing spaces/tabs will not
be changed.

Auto indent Check to auto-indent text to above line’s indent

Debug tab

Command Function

Base for numbers Select default display base in debug windows

Maximum number
of visible elements

Specify maximum number of array or memory elements to be shown in
Watch and Variables windows during simulation. Default is 16. If you
increase the number of elements, the simulation will be slower.

DK Design Suite user guide

www.celoxica.com Page 38

Directories tab

Command Function

Show directories for From the dropdown list, select Include files path list or Library modules
path list.

Add or remove directory paths to search for files. You can select
directories individually, or enter multiple paths separated by commas.

3.8 Window menu

The Window menu allows you to control the size and display of editing windows.

Command Function

New window Create a copy of the current window

Split Split the window into two or four views

Close Close the current window

Close All Close all windows

Cascade Cascade all open windows with title bars visible

Tile Horizontally Display all windows, splitting the viewing area horizontally

Tile Vertically Display all windows, splitting the viewing area vertically

Arrange Icons Arrange minimized window icons at the bottom of the viewing area

Windows… List and control the open edit windows

List of files A list of files currently open for editing appears after the Windows option.
The file currently selected is marked by a tick.

3.8.1 Windows dialog

The Windows dialog (Window>Windows) gives the names of all open edit windows. You can
make one of them the current window, or select a group of windows to be saved, closed
or tiled.

DK Design Suite user guide

www.celoxica.com Page 39

3.9 Help menu

Command Shortcut Function

Help Topics F1 List the Help topics

About DK Design Suite - Give version etc.

3.10 Keyboard shortcuts

This table gives a list of the default keyboard shortcuts. You can change them using the
Tools>Keyboard Shortcuts command.

Command Shortcut Function

File

New… Ctrl+N Display the New dialog to create:
• A project

• A file

• A workspace

Open… Ctrl+O Display the File Open dialog

Save Ctrl+S Save the active document

Print Ctrl+P Print the active document

Edit

 Alt+drag Select rectangular area

DK Design Suite user guide

www.celoxica.com Page 40

Undo Ctrl+Z Reverse the most recent change to the active document or to
the workspace

Redo Ctrl+Y Reverse the most recent undo

Cut Ctrl+X Copy the current selection and delete it

Copy Ctrl+C Copy the current selection to the clipboard

Paste Ctrl+V Copy the clipboard to the current selection

Delete Del Delete the current selection

Find Ctrl+F Find string or regular expression

 F3 Find next string or regular expression

 Shift+F3 Find previous string or regular expression

Replace Ctrl+H Replace found selection

Bookmarks… Alt+F2 Display the project’s bookmarks dialog box

 Ctrl + F2 Toggle selected bookmark on or off

 F2 Go to next bookmark

 Shift + F2 Go to previous bookmark

 Ctrl Shift
+ F2

Clear all bookmarks

Breakpoints… Alt+F9 Display the project’s breakpoints dialog box

You can also use F9 as a shortcut to insert a breakpoint at a line of code in the Code
Editor window.

View

Workspace Alt+0 Hide or show the Workspace window

Output Alt+2 Hide or show the Output window

Debug
windows:

Watch Alt+3 Hide or show the Watch window

Call Stack Alt+7 Hide or show the Call Stack window

Variables Alt+4 Hide or show the Variables window

Clocks/
Threads

Alt+5 Hide or show the Clocks/Threads window

Properties Alt+Enter Display the Properties dialog for the
current document or selection

DK Design Suite user guide

www.celoxica.com Page 41

Project

Settings… Alt+F7 Shows the Project Settings dialog box

Build

Compile Ctrl+F7 Compiler selected file

Build F7 Build this project

Debug

Go F5 Run the simulator at full speed (until a breakpoint etc.)

Restart Ctrl+Shift
+F5

Run the simulator from the beginning

Stop
Debugging

Shift+F5 Stop the simulation

Step Into F11 Run to the first statement in the function invoked in the current
line. If the current line is not a function invocation, just run
until the next statement

Step Over F10 Run until the start of the next statement

Step Out Shift+F11 Run until the start of the statement after the line which invoked
the current function

Run to Cursor Ctrl+F10 Run until the line containing the text cursor is reached

Advance Ctrl+F11 Advance a partial clock cycle, to the next code line.

Tools

Source
Browser

Alt+F12 Show a symbol browser dialog box

Help

Help Topics F1 List the Help topics

About Gives the DK and compiler versions

Output
Window

 Double
click

Takes you to line in source code

 F4 Next error

 Shift+F4 Previous error

DK Design Suite user guide

www.celoxica.com Page 42

Windows
control

 F6 Next pane in split window

 Shift+F6 Previous pane in split window

DK Design Suite user guide

www.celoxica.com Page 43

4 Project development

4.1 Project types

When you start a new project, you need to define its type. A new project may be:

a chip Not targeted to a particular product. Will not use device-specific
resources. Cannot be built as Generic mode.

a board Allows you to have multiple chip projects within a board project.
Targeted to chips defined within board. Cannot be built as Generic
mode.

a system Allows you to have multiple board projects within a system project.
Targeted to chips defined within boards. Cannot be built as Generic
mode.

a core A discrete piece of code, compiled to a specific architecture, which may
be used as part of a larger design. Cannot be built as Generic mode.

a library Pre-compiled Handel-C code that may be re-used or sold elsewhere. If
built in Generic mode can be rebuilt to target EDIF, VHDL or Verilog. If
built in other mode can only be linked with projects in that format.

a pre-defined
chip, system or
board

Targeted to a known product. These systems will be optimized for that
product, and should only be placed and routed onto that product.
Cannot be built as Generic mode.

Common pre-defined project types are supplied with DK.

4.1.1 Creating a project

1. Select New from the File menu.

2. Select the Project tab in the dialog that appears.

3. Enter the name and location (path name for the directory that it will be stored
in) for your project. You can look for a directory by clicking the … button to the
right of the Location box.

4. Select the appropriate project type from the types listed in the Project pane.

5. Click OK.

By default, a new workspace is created for your project in the same directory as the
project. Workspace files have .hw extensions. Project files have .hp extensions.

Your license may restrict the devices-specific projects you can create

DK Design Suite user guide

www.celoxica.com Page 44

4.2 Managing project files

You can order the files within your project into folders. These folders are only used to
organize the files. They do not exist as folders on your hard disk and have no effect on
your directory structure.

1. Select Project>Add to Project>New Folder
2. Type the name of the folder in the dialog box that appears.

3. Type the extension for the file types it should contain. You can leave the box
blank.

4. Click OK. A new folder appears in the File View window.

5. Drag the files that you wish to move across to the folder.

4.2.1 What files are generated for a project?

The table below lists the files built for a workspace WSpace.hw, containing a project Proj,
consisting of one Handel-C file Code.hcc that has been built for debug. Code.hcc
#includes the file Incl.hch. Output and Intermediate files will be stored in the Debug
folder.

Directory File name File type

Workspace
directory

WSpace.hw Workspace

 WSpace.pref Contains window layout preferences

Project
directory

build.log Records command line sent to the compiler (determined
by project settings / command line options) and any
feedback from the compiler during a build, e.g. errors,
NAND count

 Code.hcc Source file

 Incl.hch Header file

 Proj.hp Your project file

Intermedia
te
directory

Code.hb A program browse file used for symbol view

 Code.hco Handel-C object file built during compilation

Output
directory

Proj.dll Part of the simulator

 Proj.exp Part of the simulator

 Proj.hb A program browse file used for symbol view

DK Design Suite user guide

www.celoxica.com Page 45

 Proj.lib Part of the simulator

The default extensions for Handel-C files are now .hch, .hcc, .hcl and .hco, rather than
.h, .c, .lib and .obj.

Files and paths

The current directory is the directory containing the current project’s .hp file. All relative
path names are calculated from that current directory.

4.2.2 Adding files to a project

When developing a DK project you can add a file that you have already written or create
a new, empty one.

If you have existing Handel-C files which use the old extensions (.c, .h) you should
rename them. The new extensions for Handel-C files are .hcc and .hch. Files with old
extensions should still be recognized.

Adding a file to an existing project

1. Select Project>Add to Project>Files
OR

Right-click the mouse on the project, and select Add Files to Folder from the
shortcut menu.

The Add Files dialog box appears.

2. Select the type of file you wish to browse for from Files of type pull-down list.
You can search for Handel-C files, ANSI-C/C++ files or all types of files.

3. Select one or more files to add and click Open.

Opening an existing source code file does not add it to the project. It will not be built or
compiled. You must explicitly add files to the project.

Setting the language of a file

• When you are adding a file to a project, browse for the file using the
appropriate file type in the Files of type box.

OR

• Click on the file in the File View window. Then access the file properties
(View>Properties, or right-click on the file in the File View window). You can select
the language on the General tab.

DK Design Suite user guide

www.celoxica.com Page 46

Selecting the language of a file

The following languages are supported for source files in DK:

• Handel-C

• ANSI C/C++

The language of a file can be selected

when you create a file (File>New) or add an existing file to a project (Project>Add
to Project>Files)

OR

• by accessing the Language box in the Properties dialog (View>Properties>General)

If you have ANSI C or C++ files you need to specify custom build commands, to ensure
they are built by the backend compiler.

4.2.3 Multi-file projects

You can combine multiple files in a single project. The project can have a single main()
function or several. If there are multiple main functions within a single project, they can
be loaded onto the same chip. Each main() function can be associated with a different
clock by putting it in a separate source file. If you have more than one main() function in
the same source file, they must all use the same clock.

The project can include libraries (pre-compiled Handel-C code). EDIF, Verilog and VHDL
linking is done by Place and Route tools.

4.2.4 Linking multiple files

The Handel-C compiler has a linker, allowing you to have multiple input files and links to
library files.

DK Design Suite user guide

www.celoxica.com Page 47

Multiple files can be linked into a single output module. These files can be pre-compiled
core modules, libraries or header files. The extern keyword allows you to reference a
function or variable in another file.

LINKING MULTIPLE FILES TO A SINGLE OUTPUT MODULE

Linking is carried out during a build. You define the files to link by adding files to a
project within the GUI.

4.2.5 Removing files or folders from a project

You can remove a file or folder from a project by selecting it in the Workspace window
and pressing the Delete key or selecting Edit>Delete.

DK Design Suite user guide

www.celoxica.com Page 48

Note that the folders within a project do not exist within your directory structure. If you
delete a folder from a project, its contents will also be deleted. Files are not deleted the
file from the hard disk, so no confirmation will be asked for.

4.2.6 Search paths for project files

Code files that you have added to the project workspace will be compiled and built.
Header files will only be found by the preprocessor if they exist on a known path.

The directories searched are in the following order:

1. Directory containing the Handel-C file that has the #include directive (if
within quotes)

2. Directories listed in Project>Settings>Preprocessor>Additional include
directories (in the order specified)

3. Directories listed in the Directories pane of the Tools>Options dialog (in the
order specified)

4. Directories in the HANDELC_CPPFLAGS environment variable (in the order
specified)

4.3 Workspace and project directories

When you create a workspace, a directory is created for that workspace. Projects within
the workspace may be in the same directory or a sub-directory.

When you build a project, a directory is created for the build results. The default
directory name is the name of the configuration type (Debug, Generic, Release, Verilog
VHDL or EDIF). You can change this by setting the Output Directory values in the General tab of
the Project Settings dialog.

4.3.1 Adding an existing project to a workspace

To add an existing project to the current workspace:

1. Select Insert Project into Workspace from the Project menu.
An Open dialog appears.

2. Browse for the project (.hp) file that you wish to add to the workspace.

4.4 Configuring a project

Once you have created a project, you should configure its settings. These settings define
what type of chip is targeted, and how the compiler, preprocessor and optimizer work.

DK Design Suite user guide

www.celoxica.com Page 49

The default settings are correct for a new project that you wish to debug.

4.4.1 Defining project configurations

A collection of project settings is referred to as a configuration. DK provides six default
configurations: Debug, Release, VHDL, Verilog, EDIF and Generic. VHDL, Verilog and
EDIF are not available in Nexus PDK.

You can define your own configurations by copying an existing one and making changes
to it.

1. Select Build>Configurations...
2. Click the Add button in the dialog that appears.

3. Enter a name for your new configuration, and select the configuration type
that you wish to use as a base in the Copy settings from box. Click OK.

4. Click the Close box.

5. Open the Project settings dialog, select the new configuration and edit the
settings as required.

User-defined configurations are only available within the project they were created in.
The maximum number of configurations in a single project is 1024.

Making changes to a project configuration

To change a project configuration, open the Project Settings dialog, and select it in the
Settings For.. box.

Any changes that you make are saved with this configuration.

4.4.2 Complex projects

If you know that you are going to have multiple projects (perhaps you need to have two
independent circuits on the same chip), it is better to create a workspace first and then
add the projects to it.

If you have an existing workspace set up, open it. Otherwise:

1. Select New from the File menu. Create a new workspace to store your
project(s).

2. You are asked to enter the workspace name and the path for the directory
where it is to be stored. Workspace files have .hw extensions
Type the path in the Location box,
OR

Use the button to browse for a directory.

DK Design Suite user guide

www.celoxica.com Page 50

Creating a complex project

If your project is a board or system, it will contain subprojects. If you merely add files to
a complex project, you can compile them but not link them. For them to be linked
successfully, they must be in a sub-project (which may be a chip, core or library).

To ensure that the subprojects are built when you build the complex project, you can set
up the subprojects as dependencies of the board or system project. Select
Project>Dependencies… You will be offered a list of the projects in the workspace. Check the
ones that you wish to be rebuilt when you build the complex project.

When you create a new complex project type (by writing a new .cf file) a dialog box
appears when you click OK. The New Project Components dialog box asks what projects you
wish to use for the components of your project. You can either create a new project or
select one within the workspace from the drop-down list. If your project exists but is not
in the workspace, you can add it using the Insert Project button.

4.5 Project and file dependencies

Dependencies ensure that files that are not part of the project are updated during a
build. They also specify the order that files must be compiled and built.

There are three types of dependencies used in DK:

• Project dependencies

• File dependencies

• External dependencies

The only one you can change directly is Project Dependencies. The others show
information calculated by the compiler.

4.5.1 File dependencies

File dependencies are listed in the file properties. They specify:

• The user include files that are not included in the project but are needed to
compile and build a selected file

• Other files in the project that must be compiled before this file

These dependencies are generated when you compile the file. You can specify
dependencies for a file that is compiled using custom build steps.

To examine dependencies for a file

Select the file in the File View pane of the Workspace window and press Alt +
Enter

OR

DK Design Suite user guide

www.celoxica.com Page 51

• Right-click the file name and select Properties from the shortcut menu

4.5.2 Project dependencies

The Project>Dependencies… dialog allows you to select other projects within the workspace
that this project is dependent on. Projects listed here will be rebuilt as necessary when
the project is rebuilt.

If you are building a complex project, such as a board or system that has several chips
on it, you can create a separate project for each chip, and make the system project
dependent upon them.

4.5.3 External dependencies

The External Dependencies folder appears in the Workspace window after a project has been
built. It contains a list of the header files required by the project that are not included in
the project.

4.6 Properties dialog

To view the properties of a file, folder, project or workspace:

1. Select a file or other item in the Workspace window.

2. Select View>Properties.

Alternatively you can right-click after selecting the item and choose Properties.

The properties are displayed on the following tabs:

• General

• Inputs

• Outputs

• Dependencies

4.6.1 General tab

The information displayed on the General tab depends on whether you are viewing the
properties of a file, folder, project or workspace.

Selection Item Description

File Filename Displays name and full path of current file

 Language Allows you to select file type: Handel-C or ANSI C/C++

DK Design Suite user guide

www.celoxica.com Page 52

Folder Folder Name Displays name of folder and allows you to change it

 Extensions Displays the extensions associated with the folder and
allows you to change them

Project Project File Displays name of project

Workspace Workspace Name Displays name of current workspace

 Workspace Path Displays full path to workspace file (.hw)

The language option allows you to choose whether to compile a file for Handel-C, ANSI C
or C++. If you want to build ANSI C or C++ files, you need to specify custom build
commands.

4.6.2 Inputs tab

The information on the Inputs tab is set up by the Project settings. If Always use custom
build step has been selected for the file or project, inputs are specified by the build
commands. Otherwise, they are determined by the compiler.

Selection Item Description

File Tools Displays tools associated with current file

 Files Displays the name and full path of current file

Project Tools Displays tools associated with current project

 Files Displays the name and relative path of input files for each tool

4.6.3 Outputs tab

The information on the Outputs tab is set up by the Project settings. If the Always use
custom build steps option has been selected for the file or project, outputs are specified
by the outputs defined on the Build commands tab in Project Settings. Otherwise,
outputs are determined by the compiler.

DK Design Suite user guide

www.celoxica.com Page 53

Selecti
on

Item Description

File Tools Displays tools associated with current file

 Files Displays the name and relative path of the output file for the current
build configuration

Project Tools Displays tools associated with current project

 Files Displays the name and relative path of the output files for the
current build configuration

4.6.4 Dependencies tab

The Dependencies tab is only visible on the Properties dialog if you have a file selected. The
information on it is set up by the Project settings. If Always use custom build steps has
been selected for the file, the dependencies are specified by the build commands.
Otherwise, they are determined by the compiler.

Item Description

Tools Displays tools associated with current file

Files Displays the files that must be compiled before the selected file:
• user include files that are not included in the project but are needed

to compile and build the selected file

• other files in the project that must be compiled before this file

The list is generated when you compile the file. If you have used a custom build
step, the list is generated from the information that you give in the Build
commands tab.

4.7 Project and file settings

Project settings define how your files and projects are compiled and built. Select
Project>Settings to see the Project Settings dialog box. The different settings are available via
tabs. The tabs available will depend on the project type. For example, the Library tab is
only available for a library-type project.

The tabs available are:

• General

• Preprocessor

DK Design Suite user guide

www.celoxica.com Page 54

• Debug

• Synthesis

• Optimization

• Chip

• Linker

• Build commands

• Library

If you can’t see the tab you want, then scroll the tabs by clicking on the arrows at the
end of the tabs. Some tabs may only be visible if you have selected a Handel-C file in the
left window.

The tabs in Project Settings have changed. There is a new Synthesis tab and the Compiler
tab has been removed. The Debugger tab is now called the Debug tab. Some of the options
are now on different tabs.

4.7.1 Independent settings for files

You can create independent settings for a file. You might wish to do this if you wanted to
change the optimization level or specify custom build commands for a particular file.
Project settings for a file override the general project settings.

To create settings for a file:

1. Open the Project Settings dialog (either right-click the file in the File View and
select Settings, or select Project>Settings).

2. Select the name of the file that you wish to affect in the file pane of the
Project Settings dialog.

3. Make the appropriate changes.

4.7.2 General tab

Different settings are available for projects and for individual files.

DK Design Suite user guide

www.celoxica.com Page 55

Item Meaning Value Default

Generate debug
information

Compile for debug-enabled
simulation. Only available in Debug,
Release and Generic modes.

Check for Yes Checked for
Debug. Not
checked for
Release or
Generic.

Always Use Custom
Build Steps

Allows you to use custom build steps
for a Handel-C file instead of a normal
build. Only available if you've clicked
on a file in the left pane.

Check to use
custom build
steps

Clear

Exclude From Build Excludes file from build. Only
available if you've clicked on a file in
the left pane.

Check to
exclude file
from current
build.

Clear

Verilog 2001 Target Verilog IEEE 1364-2001
instead of IEEE 1364-1995.

Check to
target Verilog
IEEE 1364-
2001.

Clear

Intermediate files The sub-directory where intermediate
files are stored

Directory path
name relative
to the project
directory

configuration
name

Output files The sub-directory where the final
output is stored (.dll, netlist etc.)

Directory path
name relative
to the project
directory

configuration
name

If you specify custom build steps, they will always be executed for a project or a non-
Handel-C file. If you specify them for a Handel-C file, they will only be executed if you
tick Always Use Custom Build Steps.

DK Design Suite user guide

www.celoxica.com Page 56

4.7.3 Debug tab

Item Meaning Value Default

Working
directory

Directory that the simulator uses as the
current working directory

Directory
path name
relative to
the project
directory

Current project
directory (.)

Detection of
simultaneous
function calls

Detect simultaneous calls to the same
function when debugging. You can only
use this option in Debug.

Check to turn
option on

Checked

Detection of
simultaneous
channel
reads/writes

Detect simultaneous accesses to the
same channel when debugging. You can
only use this option in Debug.

Check to turn
option on

Checked

Detection of
simultaneous
memory
accesses

Detect simultaneous accesses to
memory when debugging. You can only
use this option in Debug.

Check to turn
option on

Checked

Detection of simultaneous memory accesses will only detect simultaneous accesses to different
addresses within a memory, not simultaneous accesses to the same address.

4.7.4 Preprocessor tab

Item Meaning Value Default

Preprocessor
definitions

Equivalent to the #define directive Set as required DEBUG, SIMULATE
or NDEBUG

Additional
include
directories

Add directories to the search path
for include directories

Set as required;
separate multiple
paths by a
comma

None

Ignore standard
include
directories

Allows you to omit default include
search path, (to ignore standard
include files).

Check to omit
default include
search path.

Clear

Additional
preprocessor
options

Add any cpp commands Set as required None

DK Design Suite user guide

www.celoxica.com Page 57

4.7.5 Synthesis tab

Item Meaning Value Default

Expand netlist for: Specify whether the netlist should
be expanded to minimize area
(select Area from drop-down list)
or to maximize speed (default).
This option only has an effect for
EDIF output for Actel devices.

Select Area or
Speed

Speed

Enable mapping to
ALUs

Causes compiler to target
embedded ALUs (e.g.
multipliers) where available on the
device.

Check to turn
option on

Checked for
devices that
have
embedded
ALUs

Limit ALUs of type Limits the number of embedded
ALUs of a specific type that are
targeted by the compiler. This is
useful if not all ALUs on the device
are available for the design.

This option is only available if Enable
mapping to ALUs is turned on and a
device with embedded ALUs has
been selected.

Select the type
of ALU and
specify the
maximum
number of ALUs
of this type that
the compiler
can map to

The
maximum
number of
ALUs
available on
this device

Enable mapping to
LPM macros (-lpm)

Causes compiler to generate
macros for common operators (e.g.
multipliers, adders) instead of
expanding them to gates.

Place and route tools can use these
macros to optimize the logic for a
particular device. The logic
produced tends to be optimized for
speed, but may increase the size of
your design.

Check to turn
option on

Unchecked

This option is
only available
for EDIF
output for
Altera
families.

Generate macros
above width

Specifies width above which
macros should be created

Set to width
required. For
example, a
value of 8 will
mean macros
will be created
for operators
that are more
than 8 bits
wide.

0

DK Design Suite user guide

www.celoxica.com Page 58

Enable memory
pipelining
transformations

Creates pipelined memory accesses
for on-chip SSRAM, if memory is
read into an uninitialized register
reserved specifically for the use of
the memory.

Check to turn
option on

Checked

Disable fast carry
chain optimizations

Disables the generation of fast
carry chains for adders,
subtractors, multipliers, dividers,
comparators and modulo
arithmetic.

Fast carry chains tend to speed up
a design, but restrict the placement
of logic on a device.

Check to disable
fast carry chains

Not checked.

This option is
only available
for EDIF
output.

Enable Technology
Mapper

Creates EDIF output with look-up
table primitives instead of logic
gates

Check to turn
option on

Checked for
Xilinx and
Actel devices,
clear for
other
devices.

This option is
only available
for EDIF.

Enable retimer Moves flip-flops in the circuit
around to try and meet the
specified clock rate.

Check to turn
option on

Checked for
Xilinx
devices, clear
for other
devices.

This option is
only available
for EDIF.

DK Design Suite user guide

www.celoxica.com Page 59

4.7.6 Optimizations tab

Item Meaning Value Default

High-level
optimization

Early, high level optimization. Speeds up
compilation.

Check if
required

Not checked for
Debug mode.
Checked for all
other modes.

Rewriting
optimization

Optimize logic where signals are tied high
or low etc.

Check if
required

Checked.

Not available
for Debug or
Release modes.

Common sub-
expression (CSE)
optimization

Eliminate duplicate common sub-
expressions. Usually leads to smaller
designs but may increase routing and
hence delay.

Check if
required

Checked.

Not available
for Debug or
Release modes.

Partitioning
before CSE
optimization

Split up complex gates before performing
CSE

Check if
required

Checked.

Not available
for Debug or
Release modes.

Repeated CSE
optimization

Repeats CSE optimization, removing
further sub-expressions. Slows down
compilation.

Check if
required

Checked.

Not available
for Debug or
Release modes.

Conditional
rewriting
optimization

Assumes certain states and propagates
the conclusions through the logic.
Optimizes according to results. Will slow
down compilation. Best used in
conjunction with other optimizations.

Check if
required

Checked.

Not available
for Debug or
Release modes.

Repeated
conditional
rewriting
optimization

Repeats the conditional rewrite until
nothing more can be achieved. Can
substantially increase compilation time.

Check if
required

Not checked.

Not available
for Debug or
Release modes.

Some versions of Microsoft Visual C++ are non-optimizing. These will ignore DK
optimizations and the DK simulation will run more slowly.

DK Design Suite user guide

www.celoxica.com Page 60

4.7.7 Chip tab (Project settings)

Item Meaning Value Default

Family The family containing the part you are
targeting

Select family
from drop-down
list

Generic

Device The device you are targeting Select device
from drop-down
list

Clear

Package The package of the device you are targeting Select package
from drop-down
list

Clear

Speed
Grade

The speed grade of the device you are
targeting

Select speed
grade from drop
down list

Clear

Part The part number you are targeting. Note
that the part number will override the
device, package and speed grade settings.

Type in part
number

Depends on
project

You must specify a chip type for EDIF output. If you do not want to specify a target for
VHDL or Verilog output, select Generic. This will result in generic VHDL or Verilog without
any target-specific constructs such as RAM primitives.

Your license may restrict the families you can target. These families will not be visible in
the Family list.

4.7.8 Linker tab

The items that appear on this tab depend on which build configuration you have selected.

DK Design Suite user guide

www.celoxica.com Page 61

Item Meaning Value Default

Output format Target for the compiler Determined by target
settings

As required

Object/library
modules

Extra libraries (.hcl)
and object files (.hco)
required

Type path and file
specifications
separated by commas

As required

Additional
Library Path

Directory path to search
for Handel-C libraries

Type paths separated
by commas

None

Additional
C/C++ Modules

C or C++ libraries and
object files required for
the project

Type path and file
specifications
separated by commas

None

VHDL/Verilog
output style

Output style for VHDL
or Verilog.

(You cannot target
VHDL or Verilog from
Nexus PDK.)

Active-HDL, Generic,
LeonardoSpectrum,
Precision, ModelSim
or Synplify

Choose Active-HDL or
ModelSim for
simulation. Choose
Generic if you want to
target a synthesis tool
that is not listed.

Generic

(VHDL and Verilog
only)

Ignore
standard lib
path

Don't look for libraries
along default library
path

Check not to search
standard path

Clear

Save browse
info

Store information
needed to browse
symbols

Check to store Checked

Generate
estimation info

Get the compiler to
generate HTML files
giving depth and timing
information (only
available for EDIF
builds)

Check for Yes Clear

Exclude timing
constraints

Disable generation of
timing constraints (in
generated NCF, TCL or
ACF file)

Check to disable Clear (timing
constraints are
generated)

DK Design Suite user guide

www.celoxica.com Page 62

Simulator
compilation
command line

Specify options for the
backend compiler. Used
for building simulations
and PC-hosted code.

Define how the C++
compiler is called to
compile
simulator.dll. You
may use 4 compiler-
supplied parameters.
You can also specify
commands to
generate an .exe file.

Link options defined in
the cl.cf file (Debug,
Generic and Release
only).

The Handel-C netlist simulator is no longer available.

4.7.9 Build commands tab (Project settings)

You can specify build commands for a project or an individual file. The commands will
only be executed in the build configuration in which they were specified.

Build commands are always available for a project, and for ANSI-C and C++ files. If you
want to specify commands for a Handel-C file, tick the Always Use Custom Build Steps box on
the General tab of Project Settings. You will then be able to access the Build Commands
tab.

Description Specify a description to be displayed when the custom build step is
executed. The description can include file and directory macros.

View Choose Commands, Outputs or Dependencies. You can only specify
dependencies for files.

Commands /

Outputs /

Dependencies

The use of the pane depends on what you have selected in the View box.

Create a new command, output or dependency. Press return when you
have finished writing.

Delete the command, output or dependency selected.

Move selected command, output or dependency up.

Move selected command, output or dependency down.

4.7.10 Library tab

y tab provides settings which are provided by the Chip tab and
Linker tab in other projects.
In a library project the Librar

DK Design Suite user guide

www.celoxica.com Page 63

Item Meaning Value Default

Family The family
containing the
part you are
targeting

Select family from dropdown list Generic option is
equivalent to
omitting the -f
option from the
command line

Part The part number
you are targeting

Type the part number Depends on
project

Object/library
modules

Extra libraries
(.hcl) and
object files
(.hco) required

Type path and file specifications
separated by commas

Clear

Additional
library path

Extra library
directories
required

Type paths separated by commas Default path is
DK\Lib directory

Save browse
info

Store
information
needed to
browse symbols

Check for Yes Checked

Handel-C library files with the extension .lib and Handel-C object files with the
extension .obj are no longer supported.

DK Design Suite user guide

www.celoxica.com Page 64

5 Building a project

5.1 Build process

A build happens when:

• You click on the Build button

• You have uncompiled files and you select one of the Start Debug commands in
the Build menu

• You select Build or Rebuild All from the Build menu

This should:

1. Pre-process header files and compile dependent header files.

2. Compile any files that have been added or changed since your last compilation
and also compile any files dependent upon them. (Changed files are saved.)

3. Compile all dependent projects.

4. Link the compiled files together.

5. Calculate the number of gates used.

6. Build a symbol table.

7. Generate a simulator .dll or a netlist.

If you change the configuration for a project, you will need to compile all the files. Select
the Build>Rebuild All command to ensure that all the files are recompiled.

The results of the compilation and build are displayed in the Build window. Double-
clicking an error takes you to the appropriate line in the source file.

5.1.1 Running the compiler

The Handel-C compiler compiles and optimizes Handel-C source code into a file suitable
for simulation, a VHDL or Verilog file ready for synthesis or a netlist file which can be
placed and routed on a real device. (VHDL, Verilog and EDIF outputs are not available in
Nexus PDK.)

DK includes a modified version of the GNU preprocessor. Flags can be passed to the
preprocessor using the Preprocessor tab of the Project>Settings dialog box.

You can run the compiler in either of two ways:

• The compiler is normally invoked automatically when you select an option
from the Build menu.

• To run the compiler from a command line, use the command handelc.

DK Design Suite user guide

www.celoxica.com Page 65

Once the compile has completed, the output window shows an estimate of the number of
NAND gates required to implement the design.

5.1.2 Setting up code for debug

There are several methods of coding Handel-C to help you debug a project.

They fall into two kinds:

• Code that will automatically be discarded by the compiler if you do not compile
a project for debug, e.g. the with {infile = "file"} directive.

• Code where you supply alternatives to be compiled for debug and release or
target compilations. In these cases, you can use the #ifdef DEBUG, #ifdef
NDEBUG and #ifdef SIMULATE directives.

By default, DEBUG and SIMULATE will be defined if you compile for debug, and NDEBUG will
be defined for all other compilations.

Example

#ifdef SIMULATE
sim_chan ? var; // Read from simulator
else
HardwareMacroRead(var); // Real HW interface
endif

Summary of coding techniques used for debug

• Substitute simulator channels for hardware interface channels.

• Use the assert directive to stop a compilation if a condition is untrue.

• Substitute file input for external channel input.

• Export the contents of variables into files.

5.1.3 Building and compiling for debug

Debug is the default compilation configuration.

Open the Project Settings dialog (Alt F7). Check that Debug appears in the Settings For
dropdown menu. The compiler will create a file which is in turn compiled into native
machine code using Microsoft Visual C++, GCC or GNU C++. This creates the chip
simulation.

To build and compile your project, select Build from the Build menu. Messages from the
compiler appear in the Build tab of the output window.

DK Design Suite user guide

www.celoxica.com Page 66

5.1.4 Building with library and object files

Creating a library file

To create a library file, create a project of type library and build it as normal. It will
generate a .hcl file. Library projects have a Library tab instead of a Linker tab in the
Project settings dialog.

Using a library file

You can use a Handel-C library file in any project.

1. Select the Linker or the Library tab in the Project settings dialog.

2. Add the library file name to the Object/library modules box.

3. Default library paths for DK are set up in the Directories tab of the Tools>Options
dialog. If the new library's directory path is not set up for DK, set it up for
your project by adding the directory path to the Additional Library Path box.
Multiple file names must be separated by commas. Wildcards are not
supported.

Using an existing object file

You can use an existing compiled object (.hco) file in another project

1. Select the Linker or the Library tab in the Project settings dialog.

2. Add the object file name to the Object/library modules box. You may use an
absolute or relative path name. Multiple file names must be separated by
commas. Wildcards are not supported.

5.1.5 Preparing to build for hardware

Once your program has been simulated correctly you must add the necessary hardware
interfaces. It is worth testing all interface outputs and inputs using a simulator such as
the Waveform Analyzer before you build for hardware.

• Convert any file reading and writing procedures into interface or bus
procedures.

• Ensure that you have converted all C/C++ functions to Handel-C.

• Convert any interfaces to plugins into interfaces to black box code or remove
them entirely.

• Define and declare any external RAMs, off-chip interfaces etc.

• Change the project settings to EDIF, Verilog or VHDL.

You can only target hardware from DK Design Suite. Nexus PDK will only let you simulate
your project.

DK Design Suite user guide

www.celoxica.com Page 67

5.1.6 Compiling for release or target

When you are satisfied with your project, select Build>Set Active Configuration and choose the
type of build you require from the available configurations.

VHDL

VHDL files may be simulated using a VHDL simulator (such as ModelSim), synthesized
using an RTL tool, and then placed and routed. By default, most optimizations will be
turned on. This option is disabled in Nexus PDK.

Verilog

Verilog files may be simulated using a Verilog simulator (such as ModelSim), synthesized
using an RTL tool, and then placed and routed. By default, most optimizations will be
turned on. This option is disabled in Nexus PDK.

EDIF

EDIF files are ready to be placed and routed. By default, most optimizations will be
turned on. This option is disabled in Nexus PDK.

Release

Release allows you to simulate your project without the delays inherent in debug. It also
allows you to compile simulation-only libraries without debug information, to protect
intellectual property.

Generic

Generic build mode only applies to library projects. Generic libraries are Handel-C
intellectual property which are not targeted at a particular output format. They consist of
compiled code that can be used in another program. Generic mode can be linked for
simulation, EDIF 2.0.0, Verilog IEEE Std 1364-1995/2001 or VHDL IEEE 1076.6.

5.1.7 Report files

DK generates compilation report files in XML or plain text. A report is generated for the
project, with another file for each hcc file in the project.

The reports include:

• warnings and errors

• summary of hardware used

• area estimation

• block counts

• unused declarations

• optimisation information, e.g. removed flip-flops and memories

DK Design Suite user guide

www.celoxica.com Page 68

• registers that could not be moved by the retimer

They can be viewed with a standard browser such as Internet Explorer or Firefox, using
the Celoxica stylesheet supplied. If you wish, you may create your own stylesheet and
use another tool to parse or view the XML.

What's in the reports

All the messages that appear during a compilation or build are added to the report. They
are sorted and filtered into sections within the report.

Errors and warnings
The errors and warnings that appear in the DK GUI also appear in the report. They are
sorted and filtered within the XML reports.

Optimisations
The report gives details of optimisations performed by the compiler, such as reducing the
size of a circuit by rearranging and removing components.

These messages will appear in the report corresponding to the link stage of compilation.

Removed and altered symbols
There are two sections:

• Removed symbols

This tells you which identifiers have been removed. If a symbol is a duplicate,
the identifier will be tagged to show that.

• Altered symbols

This tells you which identifiers have been altered by the optimizer (for
example, made smaller).

The identifiers are sorted into alphabetical order.

Example
If a register corresponding to an identifier is removed (or merged with another) the link
stage report gives details of the identifier and why it was removed (or merged).

• If unused, so not compiled at all, there will be a message in the compilation
section.

• If optimised away later, the message will be in the high-level optimisation
section.

DK Design Suite user guide

www.celoxica.com Page 69

• If optimised partially, or entirely but piecemeal, then there will be one or more
messages in the low-level optimisation section.

Retiming
Messages appear in the retiming section telling you what changes the retimer made, and
which registers are locked. If some are unexpectedly locked, their lack of movement
could be preventing the retimer reaching the desired clock rate.

If you also look at the output from the estimator (this will be in a separate file) you can
see where there are possible timing issues, such as the longest path. If registers on that
path are locked, work out if they need to be locked. If not, it may be possible to adjust
your sources in order to unlock, remove or move those registers.

Generating compilation reports

Reports are generated for each file in a build from the GUI, and individually from the
command-line.

Creating compilation reports from the GUI
XML report files are generated by default. To alter the settings for a project

1. Select Project->Settings->General tab.

2. Select the appropriate configuration and project

3. Select the Generate XML report and Generate plain text report checkboxes as required.

The reports are generated in a Reports subdirectory of the project configuration's output
directory. The file names are based on the target file names.

Example
For a project Proj containing the source files:

Files Purpose

Transmit.hcc
Receive.hcc
Common.hch

Source files and header files for the project

Debug.c
Debug.h
Software.c

Files used to create a simulation of an external device

For a Debug build with output directory Debug and intermediate directory Intermediate
the files

DK Design Suite user guide

www.celoxica.com Page 70

Intermediate\Reports\Tx_compile.xml

Intermediate\Reports\Rx_compile.xml

Debug\Reports\Proj_link.xml

would be produced if the Generate XML report box was checked.
Corresponding text files would be produced if the Generate plain text report box was checked

Note that there is a report file for each Handel C source file (*.hcc) and for the project
itself.

Creating compilation reports from the command line
To specify a (path and) filename for a plain text report file, use:

-Rt filename.txt

To specify a (path and) filename for an XML report file, use:

-Rx filename.xml

This will automatically refer to the default stylesheet for viewing in a browser.

Both may be specified.

Example
For a project consisting of the following files:

Files Purpose

Transmit.hcc
Receive.hcc
Common.hch

Source files and header files for the project

Debug.c
Debug.h
Software.c

Files used to create a simulation of an external device

To produce the XML reports for each file compilation and the link stage

handelc -c -o EDIF\Transmit.hco -Rx EDIF\Reports\Transmit_compile.xml -xc
Transmit.hcc
handelc -c -o EDIF\Receive.hco -Rx EDIF\Reports\Receive_compile.xml -xc
Receive.hcc
handelc -edif -o EDIF\Proj.edf -Rx EDIF\Reports\Proj_link.xml -xo
EDIF\Transmit.hco -xo EDIF\Receive.hco

To only produce a report file for the link stage

DK Design Suite user guide

www.celoxica.com Page 71

handelc -edif -o EDIF\Proj.edf -Rx Proj.xml -xc Transmit.hcc -xc
Receive.hcc

In this case, the report file will be placed in the current working directory.

Viewing the reports

The recommended method is to use an XML- and XSLT-aware browser, such as Internet
Explorer or Firefox.

Tool From Version(s) Notes

Internet Explorer

Microsoft 6 Browser. (See known problems.)

http://www.microsoft.com/windows/ie/default.mspx

Firefox

Mozilla 0.8 Browser. (See known problems.)

http://www.mozilla.org/products/firefox/

Known problems with browsers
Internet Explorer is less compliant to the W3C standards (such as HTML, and particularly
CSS2) than some other browsers. Certain standard features do not work.

Firefox has problems with deeply nested tables. The XSLT processor in Firefox does not
appear to translate attributes with units expressed as percentages faithfully.

XML report files structure
The XML report generated from the GUI consists of the following files.

• An .xml file for each .hcc file in your project. (Default name
hccfilename_compile.xml)

• An .xml file for the linked project. (Default name hccfilename_link.xml)

The following files are supplied in the Stylesheets directory of your DK installation

• A Celoxica stylesheet for the XML (report_html.xsl)

• Flags for making changes to the way the XML report is displayed
(report_html_format.xml)

• A wrapper file (report.xsl) which is used to link to the desired stylesheet. If
you wish to use your own stylesheet, replace the default stylesheet pathname
with your own in this file.

DK Design Suite user guide

www.celoxica.com Page 72

report_html_format.xml flags
You may edit report_html_format.xml to enable or disable the format flags. These are
documented within the file. Enable a flag using the syntax

<flagname enable="" />

Disable a flag using the syntax

<flagname disable="" />

Other methods of viewing the reports
If you wish to use other methods to render or view the XML files, please note that
Celoxica does not support them.

The supplied stylesheet report_html.xsl is primarily intended for convenient viewing of
an XML compilation report in an XSLT-aware browser. It only partially overcomes the
problems with Cygwin and some other tools.

The file report_html_format.xml contains some options to workaround some specific
problems using report_html.xsl with certain tools.

Enabling these options may cause problems processing the stylesheet with different
tools, and with browsers in particular.

Cygwin problems
Reports processed using Cygwin and Python and the supplied stylesheet
report_html.xsl do not contain correctly formed links to associated reports.

NXSLT problems
If an XML file is transformed using the Celoxica stylesheet report_html.xsl and NXSLT
(up to version 1.3), NXSLT complains that the stylesheet contains an invalid XPath. It
does not, but a workaround for that problem is not yet known.

Many of the tools, including NXSLT and Python XSLT libraries, have problems with files
over a certain size (for example, over 100 Mb).

5.2 Build commands in DK

Build commands are specified on the Linker tab or Build commands tab in Project Settings or
in the command-line compiler.

You need to specify custom build commands if you want to build a non-Handel-C file
(e.g. C or C++ file). You can also specify custom post-build commands.

DK Design Suite user guide

www.celoxica.com Page 73

.dll files

.dll files are created by default when you build a Handel-C simulation.

.exe files

If you want to build an .exe file, change the Simulator compilation command line on the Linker
tab in Project Settings. Alternatively, use an appropriate build command in the
command-line compiler.

.obj files

If you want to use Handel-C functions in your C or C++ code, you need to build the
Handel-C file as an .obj file. Change the Simulator compilation command line on the Linker
tab in Project Settings. Alternatively, use an appropriate build command in the
command-line compiler.

If you want to build C or C++ files for simulation, you need to build these files as .obj
files using custom build commands on the Build commands tab of Project Settings.

5.2.1 Simulator compilation command lines

The Simulator compilation command line is specified on the Linker tab in Project Settings. The
default command line uses the backend compiler you specified when you installed DK,
and the new simulator to build a .dll file for simulation. You need to change this if you
have changed your backend compiler (Visual C++ or GCC).

If you are using the command line compiler instead of the GUI, you need to select the
correct command from those listed below.

You also need to change the Simulator compilation command line if you want to build an .exe file
or an .obj file instead of a .dll file.

The netlist simulator is no longer available.

Commands for different compilers

There is a different default simulation command line for each of the backend compilers
supported by DK.

• Microsoft Visual C++: cl /Zm1000 /LD /Oityb1 /GX
/I"InstallDir\DK\Sim\Include" /Tp"%1" /Fe"%2" %4

• GCC: g++ -dll -shared -fno-builtin -I"InstallDir\DK\Sim\Include" -
O2 -mno-cygwin "%1" -o"%2" %4

DK Design Suite user guide

www.celoxica.com Page 74

5.2.2 Generating a standalone executable

You can generate an .exe file from Handel-C by changing the default simulator
compilation command line. The command needs to target the correct backend compiler
(your C++ compiler).

If you build a simulation to run as an .exe file it will run faster than a simulation from the
DK GUI.

Using Project Settings in the GUI

If you are using the GUI compiler, change the default text in the Simulator compilation
command line pane in the Linker tab of the Project Settings dialog.

• Visual C++: cl /Zm1000 /Oityb1 /GX /I"InstallDir\DK\Sim\Include"
/Tp"%1" /Fe"%3.exe" %4

• GCC: g++ -dll -shared -fno-builtin -I"InstallDir\DK\Sim\Include" -
O2 -mno-cygwin "%1" -o"%3.exe" %4

You could set up a new build configuration to store these project settings.

Using the command line compiler

If you are using the command line compiler, change the -cl option. For example, if you
are using GCC as your backend compiler:

handelc -s -cl"g++ -dll -shared -fno-builtin -I"InstallDir\DK\Sim\Include"
-O2 -mno-cygwin
 "%1" -o"%3.exe" HandelCFileName.hcc

5.2.3 Generating an .obj file

If you want to use Handel-C functions in C or C++ code, you need to compile your
Handel-C file as an .obj file. To generate an .obj file from a Handel-C file you need to
change the default simulator compilation command line in DK.

Using the GUI

To create an .obj file from a Handel-C file using the GUI compiler, change the default
Simulator compilation command line on the Linker tab of the Project Settings dialog. Use the
relevant command for your backend compiler:

• Microsoft Visual C++: cl /Zm1000 /c /Oityb1 /GX
/I"InstallDir\DK\Sim\Include" /Tp"%1" /Fo"%3.obj" %4

• GCC: g++ -c -shared -fno-builtin -I"InstallDir\DK\Sim\Include" -O2
"%1" -o"%3.obj" %4

You could set up a new build configuration to store these project settings.

DK Design Suite user guide

www.celoxica.com Page 75

Using the command line compiler

If you are using the command line compiler, change the -cl option:

• Visual C++: handelc -s HandelCFileName.hcc -cl "cl -c -O2 -
I"InstallDir\DK\Sim\Include" %1 -Fo%3.obj"

• GCC: handelc -s HandelCFileName.hcc -cl "g++ -c -O2 -
I"InstallDir\DK\Sim\Include" %1 -o%3.obj"

If you want to create an .obj file from a C or C++ file, you have to specify a custom build
command on the Build Commands tab in Project Settings.

5.2.4 Post-build commands

You can specify post-build commands for a project on the Build Commands tab in Project
Settings. Open Project Settings, then check that your project is selected in the left pane,
rather than a file. You can then select the Build commands tab. Any build commands that
are specified at the project level are executed after all the project files have been
compiled.

Example

To copy the Result.dll to a different directory after it has been compiled:

1. Select Commands in the View box and type
copy $(TargetDir)\Result.dll $(WkspDir)\bin\Result.dll

2. Select Outputs in the View box and specify $(WkspDir)\bin\Result.dll. as the
output file.

5.3 Custom build commands

Custom build commands are specified on the Build Commands tab in Project settings.
You can specify custom build commands for

• a project

• an individual file

You need to specify custom build commands if you want to build a file that is not a
Handel-C file (e.g. a C++ file).

If you specify custom build commands, they will always be executed for a project or a
non-Handel-C file. If you specify them for a Handel-C file, they will only be executed if
you tick Always Use Custom Build Steps box on the General tab.

The build commands will be executed at the appropriate point in the build process if the
output file is out of date with respect to the input file. Custom build commands applying

DK Design Suite user guide

www.celoxica.com Page 76

to the whole project will always be executed after the normal build process has
completed.

If you specify commands involving a .bat file, you need to precede the command with
"call".

The commands will only run in the configuration in which you specified them.

5.3.1 Specifying a custom build

To specify a custom build:

1. Open the Project Settings dialog (Project>Settings). Select a file or a project in
the left pane.

2. Click on the Build commands tab.
If you have selected a Handel-C file you will need to tick the Always Use Custom
Build Steps box on the General tab to access the Build commands tab.

3. Type a description in the Description box.

4. Select Commands in the View box.

5. Type your commands in the pane below.

6. Select Outputs in the View box and write the names of your output files in the
pane below. You must specify at least one output file.

7. If you are specifying build rules for a file, you can also specify dependencies
(select Dependencies in the View box).

8. Click OK then build your project. You will see the text you specified in the
Description box as the custom build steps are executed.

If you are using GCC as your backend compiler, this should be specified in the build
command using g++ if you have a C++ file, or gcc if you have a C file.

5.3.2 Build commands, outputs and dependencies

Custom build commands, outputs and dependencies are specified on the Build commands
tab.

Use quotes around strings if they have spaces in them.

Commands

You can specify build commands when in the Commands view. Commands can include
file and directory macros. If you write more than one command, they will be run in order
from top to bottom. If you create a command involving a .bat file, you need to precede
the command with "call".

DK Design Suite user guide

www.celoxica.com Page 77

Outputs

You can specify the names of output files when in the Outputs view. The files are time
stamped and the commands are only executed when the files are out of date with respect
to the associated source files or project. Specify different output files for each set of
commands. If you specify the same output file for more than one file with build
commands, or for a file and the project it belongs to, only the first set of commands will
be executed.

You must specify at least one output file (even if you specify custom build steps at
project level).

Dependencies

You can specify files that need to be built before the custom build step when you are in
the Dependencies view. This will affect the order of the build process.

5.3.3 File and directory macros

File and directory macros are supported for use in custom build commands. You can also
use them in the custom build description. Write the macros in the form $(Macro) where
Macro refers to one of the file or directory expressions listed below, such as $(IntDir).

Macros are expanded prior to display or execution. If the expanded macro contains
spaces, you will need to enclose the macro name in quotes. The directory or file
referenced must already exist or be created by DK or another tool before the macro runs.

File and directory macros make it easier to move your project to a different directory or
computer, and reduce the chance of typographical errors in file pathways.

DK Design Suite user guide

www.celoxica.com Page 78

Macro Description

$(IntDir) Path to the directory specified for intermediate files, relative to the
project directory

$(OutDir) Path to the directory specified for output files, relative to the project
directory

$(TargetDir) Full path to the directory specified for output files
$(InputDir) Path to input directory relative to project directory
$(ProjDir) Full path to the project directory
$(WkspDir) Full path to the workspace directory
$(TargetPath) Name and full path for the project output file
$(TargetName) Name of the output file
$(InputPath) Name and full path for the input file
$(InputName) Name of the input file
$(WkspName) Name of the project workspace

Examples

Assuming the directory structure above on drive C:

• $(OutDir) would expand to \Debug

• $(TargetDir) would expand to C:\Program
Files\Celoxica\DK\Examples\Handel-C\Example1\Debug

DK Design Suite user guide

www.celoxica.com Page 79

• $(ProjDir) would expand to C:\Program
Files\Celoxica\DK\Examples\Handel-C\Example1

• $(WkspName) would expand to Example1.hw

DK Design Suite user guide

www.celoxica.com Page 80

6 Command compiler
del-C compiler c f

use it from t must pass options to it directly instead of
roject settings d

 the compiler from delc, for example:

delc -verilog -syn

ary s

ar command line

 line
The Han an be invoked from the command-line as well as from the GUI. I
you wish to he command-line, you
via the P ialog.

To run the command line, use the command han

han Leonardo MyFile.hcc

6.1 Summ of command line option

The mmtable below su
compiler.

izes the options available when using the

DK Design Suite user guide

www.celoxica.com Page 81

Option Meaning

Compile only. Do not generate netlist. Output .hco or .

Specify target family

-c hcl file.

 Family

-b ate browse info database file

Disable generation of timing constraints in generated NCF, TCL

-r "Filename" name
nd_Name" path

"Filename" rce file

ame"

Add pathname to library path

lp mand line options)

lation and debug

ine" ing simulator output

"

-g n

"string" Detect simultaneous function calls, channel and memory
accesses

Hardware output options (not available in Nexus PDK)

Target VHDL output
rilog Target Verilog output

nd area when generating EDIF output.
L files)

k r when generating EDIF output

nthe style

-f

-p Part Specify target part
-fc Disable generation of fast carry chains

Gener
-notcon

or ACF file

Specify browse info database file
-o "Path_a Specify output file name and
-xc Treat file as Handel-C sou
-xl "Filename" Treat file as Handel-C library file

 -xo "Filen Treat file as Handel-C object file
-L "Pathname"

-he Print help screen (summary of com

Simu ging options

-s Target simulator
-cl "CommandL Specify command line for compil

-be "Options Pass options to backend compiler

Compile with debug informatio

-S

-W Reserved for future use.

-edif Target EDIF output
-vhdl

-ve

-e Estimate logic depth a
(Generate HTM

- lutpac Use technology mappe
-retime Enable retiming.

-syn Sy sisTool Specify VHDL or Verilog output

DK Design Suite user guide

www.celoxica.com Page 82

-N-piperam Turns off settings to create pipelined SSRAM.

elined, on suitable devices, if

-N+speed ctel devices, expands netlist to maximize

-N+area ut for Actel devices, expands netlist to minimize

Preprocessor options

-cpp "Option"
 those listed below.

-D Symbol

-E

-I "Pathname"

-U Symbol symbol

Optimizer options

Turn on optimization

dth Use macros for data paths wider than Width.This option only
has effect for Altera families.

6.2 Compiler target options

t the simulator or hardware. Hardware targeting is not
ing the command line compiler, you can specify one

Target the simulator

Target EDIF 2.0.0

Target VHDL IEEE 1076
rilog Target Verilog IEEE 13

arge

dify the HDL or EDIF code generated by using further options:

Otherwise on-chip SSRAMs are pip
memory is read into an uninitialized register reserved
specifically for the use of the memory.

In EDIF output for A
speed

In EDIF outp
area

Pass Option to preprocessor. This enables you to pass options
in addition to

Define preprocessor symbol

Pre-process source only.

pathname to preprocessor include path

Undefine preprocessor

-O Turn on maximum optimizations
-O- Turn off all optimizations

-O+ optimize optimize

-O- optimize Turn off optimize optimization

-lpm Wi

The Handel-C compiler can targe
available in Nexus PDK. If you are us
of the target options:

-s

-edif output
-vhdl .6 output
-ve 64-1995 (default) or 2001 output

-sc T t SystemC 2.0.1 output (if enabled)

Target modifications

You can mo

DK Design Suite user guide

www.celoxica.com Page 83

-syn SynthesisTool Specify the style of VHDL or Verilog output.

code. Use this option if you want to
 synthesis or simulation tool that is not listed in one of

the other options.

erates Aldec Active-HDL-style code for
simulation.

le

ModelSim: generates Model Technology ModelSim-style code for
simulation.

ify: generates Synplicity Synplify-style code

tes Mentor Graphics Precision-style code

ed if not used in conjunction with the -vhdl

syn Leonardo MyFile.hcc

 2001 (IEEE 1364-2001)
 Enable technology mapper when generating EDIF output

u are g Active-HDL or ModelSim,

SynthesisTool must be one of:

Generic: generates generic
target a

ActiveHDL: gen

Leonardo: generates Mentor Graphics LeonardoSpectrum-sty
code

Synpl

Precision: genera

This option is ignor
or -verilog options.

E.g. handelc -verilog -

-vlog2001 Target Verilog
-lutpack

If yo enerating VHDL or Verilog code for simulation with
you can only the same use multi-port memories if the ports have the same width and
depth.

6.3 Pa

If you are u he -cpp option to pass options
 Hand

llowin

-D Symbol

l ssor symbol

compile

rocessor include path

ss options to preprocessor

sing the command line compiler, you can use t
to the el-C preprocessor.

The fo g options are available:

Option Description

Define preprocessor symbol
-U Symbo

Undefine preproce

-E Pre-process source only (stop after pre-processing and don't
code).

-I Pathname Adds Pathname to prep

-I, -D and -U can be used directly and do not have to be passed to the preprocessor
with -cpp.

DK Design Suite user guide

www.celoxica.com Page 84

Exam e

handelc -s -cpp -Iinclude prog.hcc

This adds

6.4 p

ing the command line compiler, you can use the -O option to control the
using the DK GUI, use the Optimization tab in Project

Turns on all optimizations

ations

 optimization

The possible values for optimize are:

st carry chain optimizations
h

 N for common operators above width N

 macros will be created for operators that are

e s
 Repeated CSE optimizations

g optimizations

reduce the number of FFs. This is only applied locally and does not take into
potential negative effects on timing.)

(Further information about these options is available in the description of the

imizing. The -O option will be ignored

pl

the directory include to the search path.

O timizer options

If you are us
optimization levels. (If you are
Settings.)

Option Description

-O

-O- Turns off all optimiz
-O+optimize Turns on optimize optimization
-O-optimize Turns off optimize

cr Conditional rewriting optimizations
cse Common sub-expression elimination optimizations
fcc Disable fa
hig High-level optimizations
lpm Generate macros (instead of gates)

For example, lpm 8 means that
more than 8 bits wide.

This option is only enabled for Altera families.
pcs Partitioning before CSE optimization
rcse

rcr Repeated conditional rewritin
retime Retiming optimizations. (Moves flip-flops from gate inputs to the outputs to

account any
rewrite Rewriting optimizations

Optimization tab (Project Settings).)

Some versions of Microsoft Visual C++ are non-opt
by these compilers, and DK simulations will run more slowly.

If no optimizer command line options are specified:

DK Design Suite user guide

www.celoxica.com Page 85

• In EDIF, VHDL, Verilog and Generic modes all optimizations are enabled
ept for fcc, l

ion time.
exc pm and rcr. Enabling rcr can substantially increase
compilat

e mode, only high-level optimization is enabled. You cannot enable

andelc -O+rcr prog.hcc -edif

 pr lus repeated conditional

-cse prog.hcc -edif

e pr common sub-
lim

p

 you are using the command line compiler, you can use these options to help you debug
Handel-C programs:

-g Compile with debug information
-e Estimate logic area and depth

-W No effect. Reserved for future use.

6.5.1 Targeting the simulator

u ar , use the -s option to target the simulator.

andelc -s file.hcc

The netlist simulator is no longer available.

If you are using GCC as your backend compiler, you need to use the command line

• In Debug mode, no optimizations are enabled. You can only specify high-level
optimization (high) in Debug mode.

• In Releas
any other optimizations in this mode.

Examples

handelc -O prog.hcc -edif

Compiles the program prog.hcc with all default optimizations.

h

Compiles the ogram prog.hcc with all default optimizations p
rewriting.

handelc -O

Compiles th ogram prog.hcc all default optimizations except for
expression e ination.

6.5 Com iler debugging options

If

-s Target the simulator

-S Detect simultaneous accesses to functions, memory and channels

If yo e using the command line compiler

h

option G++ if you are targeting the new simulator and GCC if you are targeting the old
simulator (see default simulation command lines).

DK Design Suite user guide

www.celoxica.com Page 86

6.5.2 Detecting simultaneous access to functions, memory and
channels

When you are debugging your code, you can choose whether you want the simulator to
detect simultaneous calls to functions, simultaneous memory accesses and simultaneous
channel accesses.

By default, all of these options are switched on. The detection of simultaneous memory
bugger significantly if you have a lot of rams in your code.

UI, the options are set on the Compiler tab in Project Settings. If
you are using the command line compiler, use the -S option:

.

Detection of simultaneous memory accesses is on.

neous memory accesses is off.

ifferent addresses within a

access may slow down the de

If you are using the G

-S+parfunc Detection of simultaneous function calls is on

 -S-parfunc Detection of simultaneous function calls is off.

-S+parmem

-S-parmem Detection of simulta

-S+parchan Detection of simultaneous channel accesses is on.

-S-parchan Detection of simultaneous channel accesses is off.

-S+parmem will only detect simultaneous accesses to d
memory, not simultaneous accesses to the same address.

6.6 Simulation compilation control options

To control the way that a simulation is compiled, you can pass options to the backend
compiler. (The backend compiler is specified when you install DK.)

-cl Specify the backend compiler command line
-be Pass options to backend compiler

6.6.1 Pass options to command line

If you are using the command line compiler, the -cl"CommandLine" option can be used
tion. Handel-C code is converted into a
 the backend compiler, so that it can run

to pass options for compiling the code for simula
temporary C++ file, and this is then compiled by
on a host machine.

DK Design Suite user guide

www.celoxica.com Page 87

If you are not using the command-line compiler, the CommandLine option can be passed

 of the command to be executed by
iler can provide:

om Handel-C

.dll

%4 : s

Exam e

handelc -

genera
command:

cc

6.6.2 nd compiler

The -be"S

Handel-C c e
backend compiler, so that it ca

 variable in the command line
 be that defined in the

on. If
t present in the command line, the -be"String" option will not be

e.

%2 %4" -be"gibbons and apes"

enerates a temporary .cpp file for the simulator (for example, xyz. cpp) and then runs
nd:

bill xyz.cpp aloha.dll gibbons and apes

If the HANDELC_SIM_COMPILE environment variable has been set to cl /LD %1 %3.obj
%4 -Fec.dll

to the back-end compiler via the string in the Simulator compilation command line box in the
Linker tab of the Project Settings dialog.

The CommandLine option is a quoted string consisting
the compiler. There are various parameters the comp

%1 : Name of the temporary C++ source file generated fr

%2 : output file name

%3 : output file root

tring passed to -be option

pl s

s file.hcc -cl"g++ -c -O2 %1 -o%3.obj"

tes a .cpp file for the simulator (for example, called xyz.cpp) and then runs the

g++ -c -02 xyz.cpp -ofile.obj

handelc -s -cl"g++ %1 -o%3.exe %4" -be"vga.lib" fred.h

generates a .cpp file and then runs the following command:

g++ temp.cpp -ofred.exe vga.lib

 Pass options to backe

tring" option can be used to pass extra options to the backend compiler.

ode is converted into a temporary C++ file, and this is then compiled by th
n run or be simulated on a host machine.

The String option is a quoted string that replaces the %4
used to invoke the backend compiler. This command line may
HANDELC_SIM_COMPILE environment variable or that defined in the -cl build opti
the %4 variable is no
used. No checks are performed on the string valu

Examples

handelc -s aloha.hcc -cl"bill %1

g
the comma

DK Design Suite user guide

www.celoxica.com Page 88

handelc -s driver.hcc -be"vga1.lib"

generates a temporary file for the simulator (for example, .cpp xyz. cpp) and then runs
the command:

ec.dll

ith it.

reate the simulation file when compiling using the command line.

 is

HANDELC_CPPFLAGS the
ecuted.

The DK s ANDELC_CPPFLAGS variable to contain the –C option. The -C
option s iler.

To cha e cribed in the installation
instruc n

Circum de:

ds

• Command line settings, e.g. cl /Zm1000 /LD /Oityb1 /GX
de" /Tp"%1" /Fe"%2" %4 (you need
sed through DK and the backend

Tempora

You can te y alter the value of the variable by typing the following at the
comma

set HANDELC_CPPFLAGS=

For examp

set HA E

cl /LD xyz.cpp driver.obj vga1.lib -F

6.7 Environment variables

The Handel-C compiler has three environment variables associated w

• HANDELC_SIM_COMPILE is an alternative to the -cl command line option. It is
used to c

• CELOXICA_DK_HOME is the DK install directory. For example, if you install in the
default location, CELOXICA_DK_HOME C:\Program Files\Celoxica\DK

• The value of is passed as command line options to
preprocessor each time the compiler is ex

 in tallation sets the H
pa ses source code comments through to the comp

ng the environment variables use the facilities des
tio s.

stances in which you can use environment variables inclu

• Custom build comman

/I"%%CELOXICA_DK_HOME%%\sim\inclu
two sets of "%" as the command is pas
compiler before being expanded.

• In the Additional Library Path setting on the Linker tab in Project Settings.

rily changing environment variables

mporaril
nd prompt:

Command Line Options

le:

ND LC_CPPFLAGS=-C -DDEBUG

DK Design Suite user guide

www.celoxica.com Page 89

7 Simulation and debugging

 simulator

o test your program without using real hardware. It allows
yo

ds

ction, and what functions were called to reach it, in the Call

Select variables to be displayed in the Watch and Variables windows

he simulator in several ways:

or position

il you reach a user-defined breakpoint

h statements and functions

 execution point at a time

7 .1 St

From the Build menu select Start debug. The Debug menu appears in place of the Build menu.

ltiple threads using separate clocks you need to

• You can step through the code. Statements that are completed at the end of

gh code from execution point to execution
at any selected line in the code.

• You can use the Waveform Analyzer to inspect signals on outputs and

7.1 Using the

The simulator enables you t
u to see the state of variables in your program at every clock cycle.

You can view information about the simulation in various windows:

• See the clocks in use and the threads currently running in the Clocks/Threa
window

• See the current fun
Stack window

•

You can run code in t

• Run until the end

• Run until you reach the current curs

• Run unt

• Step throug

• Advance through code one

• Pause the simulation

.1 arting debug and simulation

• Where the code includes mu
select a clock. The first thread associated with that clock becomes the current
thread.

the current clock cycle are marked with an arrow.

Alternatively you can advance throu
point, or use breakpoints to halt the debugger

generate signals for inputs

DK Design Suite user guide

www.celoxica.com Page 90

7.1.2 Debug symbols in the editor window

Statem
statements execute u will
see the

In the cu

ents associated with the current clock cycle are marked with arrows. All these
together. If you single-step or advance through the code, yo

 arrows move.

rrent thread

The yellow arrow marks the gh
 it mark t in the code that will consume a clock cycle on that thread.

 current execution point. When you are stepping throu
s the poincode,

White arrows mark all other code executed in the current clock cycle in the current
thread. They mark "control logic"; control statements that lead to the execution point
marked by the yellow arrow.

Green arrows mark current function calls. This gives a stack trace for the current
thread.

In other threads

The equivalent of yellow, white and green arrows are all marked grey in
To see them, you must switch to that thread.

 other threads.

Other symbols

 Active breakpoint

 Disabled breakpoint

 Enabled and disabled breakpoints on same line

 Pointer to error and browse results

7.1.3 Selecting a clock

If you are simulating a project with multiple clocks, a Select Clock dialog will pop up asking
you to select which clock to use when you start the simulation.

s window shows all clocks in use. The selected clock

To sele

s. The thread currently

read in three ways.

During simulation the Clocks/Thread
is the one associated with the current thread.

ct a different clock, follow a different thread.

7.1.4 Selecting a thread to follow

In debug the Clocks/Threads window shows all the running thread
followed by the simulator is in bold.

You can change the followed th

DK Design Suite user guide

www.celoxica.com Page 91

Selecting a thread in the code editor

1. Click a code line marked with a grey arrow within the thread you want to
rk execution points in other threads).

on identifies it. If
several threads are active, you can select the thread you want from a
dropdown list. Thread identifiers match those shown in the Clocks/Threads

 editor

Set a b a hen the breakpoint is reached, that
thread beco

Selec g

Open t C click and select Follow Thread.

7.1.5 o n calls in the Call Stack window

s the
lled it

follow. (Grey arrows ma

2. Right-click the mouse and select Follow Thread from the shortcut menu.

3. If a single thread is active at the code line, the menu opti

window.

Setting a breakpoint in the code

re kpoint in the thread you want to follow. W
mes the current thread.

tin a thread in the Clocks/Threads window

he locks/Threads window, select a thread, right-

 F llowing functio

The way a function has been called is displayed in the Call Stack window. This show
current function at the top of the window, and the uncompleted functions that ca
beneath.

Debug symbols in the Call Stack window

Yellow arrow marks the current function in the current thread.

Green arrows mark function calls on the stack (showing the path of calls to reach the
current function).

 Bre
marker ma white (disabled) or grey (enabled and disabled on same
line).

7.1.6 Examining variables

s in two windows:

Variables window (View>Debug windows>Variables)

By default variables are displayed in decimal. To change the base, right-click in the
selected window and select a new base from the pop-up menu.

You can change the display base of an individual variable using the Handel-C
specification with {base=n}.

akpoint marker indicates that there is a breakpoint on the line. The breakpoint
y be red (enabled),

During debug you can examine variable value

• Watch window (View>Debug windows>Watch)

•

DK Design Suite user guide

www.celoxica.com Page 92

You can turn off th
= 0}. For example

nd structu utton next to the name. Click on this
o display i structure members.

7.2 Using the debugger

You can use the debug commands to:

hroug

• Advance through every execution point in your code

• Set and remove breakpoints to segment the simulation

• Follow a selected processing thread or clock

also use the extern "Language" construct to link to standard C and C++

• If you are using the GUI compiler, select Generate Debug information on the General
ject Settings.

debug

e display of a variable by using the Handel-C specification with {show
:

int 32 pike with {show = 0};

Arrays a
button t

res are displayed with a + b
ndividual array elements or

• Step t h statements and functions

• View the clock cycle count

• See how a function has been called

• Examine variables

You can
libraries to use the printf/cout functions and other standard file I/O functions.

7.2.1 Generating debug information

When you compile your project in Debug mode, you can choose to generate debug
information. This allows you to step through statements and functions, or to advance one
execution point at a time.

• If you are using the command line compiler, use the -g option to generate
debug information.

tab in Pro

7.2.2 Debug project configuration

The default settings for the Debug project configuration are those to enable you to
a project.

The Project Settings specific to debug are:

DK Design Suite user guide

www.celoxica.com Page 93

Preprocessor defines the variables DEBUG and SIMULATE. This allows you to set up
use

Compiler Generate Debu g boxes checked.

Save browse i
 information option (create HTML files) switched

Exclude timing constraints (-notcon) unchecke

Debug

Optimizat

7.2.3 Stepping through code

In a seque
and you st
function or t
a time.

Becaus
par statem
each branc mpleted
before the e code can continue after the block.

When you
through th time. If
other threa ot
be stepped nt in the Clocks/Threads window increases when
you leave the equired by the longest
thread

Single stepping

art Debug>Step Into. You can continue stepping by

me

as it doesn't take any clock cycles.

In addition to statements that take clock cycles, you can also step to breakpoints or to
Step Over functions and

the code according to whether you are using the simulator, e.g.
simulator channels instead of real interfaces.

g and Generate warnin
Linker Output format set to Simulator.

nfo box checked.

Generate estimation
off.

d

ger Working directory for debugger set to current (.).

ions High-level optimization switched off.

ntial language such as ANSI-C, you can step through code one line at a time,
op at an execution point. In Handel-C, you step through code one statement,
 breakpoint at a time. You can use Advance to move through code one line a

e Handel-C is a parallel language, there can be multiple execution points. Where a
ent is found in your code the execution splits into separate threads, one for
h of the par statement. The threads will wait until they have all co
main thread of th par

are debugging you can only follow one thread at a time. The simulator steps
e thread you are following one statement, function or breakpoint at a
ds within a parallel block require more clock cycles, these clock cycles will n
 through. The clock cycle cou

par block to show the number of clock cycles r
.

To step through your code, select Build>St
pressing F11.

The step that is currently executing is shown by a yellow arrow. If other code in the sa
thread is executed in the same clock cycle this is shown by white arrows. You can
advance to this code, but not step to it,

function or macros calls. You can choose to Step Into, Step Out of or
macros.

DK Design Suite user guide

www.celoxica.com Page 94

Stepping through code: example

This example illustrates the behaviour of debugger arrows when you are stepping
through your code.

pen the Debug_arrows.hw workspace in DK by double-clicking it.

Stepping through the example

1. Press

 at the function call to
blob() green arrow should be at the start of the main() function. The

show other code executed on the same clock cycle.

/Threads window (View>Debug Windows>Clocks/Threads).
r the blob() function by selecting Debug>Step Over or pressing F10.

 arrow should be at the y = 3 statement after the call to the blob()
function. If you had stepped into the function (F11) instead, the yellow arrow

ld be within the blob() function. Notice that the number of clock cycles
orted in the Clocks/Threads window is 1.

The yellow arrow should be at the first delay statement within the par block,
 of clock cycles reported will have increased to 2.

eased to 4. This is because the

 the simulation, select Debug>Stop Debugging.

 you will move forward one statement or function at a time.
int rather than a complete clock cycle, use the

To run the example, o
The example is in InstallDir/DK/Examples/Handel-C/ExampleDebug/.

1. Build the project in Debug mode by selecting Build debug_arrows from the Build
menu.

2. Step into the code by selecting Build>Start Debug>Step Into or pressing F1
F11 again.
The yellow arrow (current execution point) should be

 and the
white arrows

3. Open the Clocks

4. Step ove
The yellow

wou
rep

5. Press F10 again.

and the number

6. Press F10 again.
The yellow arrow will be at the y = 0 statement.
Note that the number of clock cycles has incr
other thread in the par statement takes two clock cycles (two delay
statements), and the current thread cannot continue executing until the
parallel thread has finished.

7. To exit

7.2.4 Advancing through code

If you step through your code
To move forward a single execution po

Advance command or select Debug>Advance. You must Step Into your code before you
can use the Advance, by pressing F11.

DK Design Suite user guide

www.celoxica.com Page 95

7.2.5 Arrow behaviour during step and advance

r code, yellow and white arrows mark
n points.

set ements that take
l

ta

te ents are statements that take a clock cycle, function calls and any statement
at has a breakpoint set.

ent
ent.

 to any of these steps.

= &= |= ^=

(Expression); (If Expression is assigned on return)

nel ? Variable ;

el ! Expression;

); (Where no default clause coded)

 statements

Advance statements are executable statements that do not take any clock cycles.
ave breakpoints set are special cases. These are treated

as step statements rather than advance statements.)

ng through code, the
g through

lse {...}

do {..
than th w

When you are stepping or advancing through you
the executio

A sub
clock

of execution points, which include assignments and other stat
es and function calls, may be stepped over or into. All execu cyc

advanced
tion points may be

 to.

Step s tements

Step sta m
th

When you are stepping through code, a yellow arrow marks the current step statem
and white arrows show the other execution points associated with that step statem
You can also Advance

Any assignment (=, ++ , -- , += , -= , *= , %= , <<= , >> , , ,)

return

Chan

Chann

releasesema();

delay;

Function()

prialt (...

Advance

(Functions and statements that h

You cannot step to Advance statements. When you are advanci
current advance statement is marked by a yellow arrow. When you are steppin
code, advance statements are shown as white arrows, when associated with the current
step statement.

return;

return(Expression); (If Expression is not assigned on return)

while (Expression){...}

if (Expression){...} e

.} while (Expression); (The "do" part is considered the active point rather
e " hile" part)

DK Design Suite user guide

www.celoxica.com Page 96

switch

break;

goto Labe

continue;

prialt (. ere a default clause exists)

es ignored by Advance and Step: no arrows

oint. You cannot step or advance

{...}

par

q

ex_Count) (No true assignments
involved)

ifselect

assert

7.2.6 Using breakpoints

Breakpoin stepping through code.

ins an execution point.

u
ebug>Restart.

all breakpoints will be hit as you run
h the code, but the order in which they are hit is undefined.

You can carry out more complex actions using the Breakpoints dialog (Edit>Breakpoints).

 (Expression){...}

l;

..); (Wh

for loops

for // white arrow for Step, yellow arrow for Advance

(Init; // yellow arrow for assignment on first pass if you are stepping

Test; // no arrow

Iter) //yellow arrow for assignment

{...}

No execution point. Lin
displayed

The following lines of code do not have any execution p
to these lines and you cannot set breakpoints on them.

se

par | seq (index_Base ; index_Limit ; ind

All declarations

ts give you an alternative to

You can set breakpoints on any line of code that conta

When the debugger reaches a breakpoint it pauses until you request it to continue. Yo
can restart the simulation by selecting D

If you set breakpoints on statements in a par block,
throug

DK Design Suite user guide

www.celoxica.com Page 97

Setting breakpoints

1. Select the line of code where you wish the simulator to pause. To search for
known names, use Edit>Find.

2. Click the Insert/Remove Breakpoint button

OR

Right-click the mouse and select Insert Breakpoint.

OR

Press F9

Multiple breakpoints on same line

A breakpoint can be active or inactive. You might wish to have two breakpoints on the
same line, set to break according to different conditions, and have one of them active
and one inactive, depending which thread you were following.

You can have multiple breakpoints on the same line by entering the same line twice in
the Edit>Breakpoints dialog. You can disable a breakpoint by unchecking its box in this
dialog and enable it by checking the box.

Disabling breakpoints

A breakpoint can be active or inactive.

If you wish to keep a breakpoint but not to stop at it:

1. Move the cursor to the line of code where the breakpoint is set.

2. Right-click the mouse.

3. Select Disable Breakpoint.

All breakpoints are listed in the Edit>Breakpoints dialog box. You can also disable a
breakpoint by unchecking its box in this dialog.

Removing breakpoints

• Find the line of code where the breakpoint is set.

• Click the breakpoint button

OR
Right-click the mouse and select Remove Breakpoint

OR
Open the breakpoints dialog (Edit>Breakpoints), select the breakpoint(s) to be
removed and click Remove.

DK Design Suite user guide

www.celoxica.com Page 98

Breakpoints in macros and inline f

If you set a breakpoint in an inline function

unctions

 or a macro procedure, the breakpoint will
occur every time that the code is used.

cro expression.

epped over

e Clocks/Threads window is not incremented until you have
set in a single clock cycle.

You cannot set a breakpoint in a ma

Breakpoints in replicated code

If you set a breakpoint in replicated code, a breakpoint is set in every copy of the code.
When you step through the code all of these breakpoints are st
simultaneously.

The clock cycle counter in th
passed through all the breakpoints

DK Design Suite user guide

www.celoxica.com Page 99

8 Optimizing code

8.1 Logic estimator

The Handel-C compiler can give information on logic usage and depth to help you
optimize your designs. (Note that this information is based on estimates, since full place

ion.)

Logic estimation information is only available for EDIF builds. You cannot use the Logic
estimator from Nexus PDK.

Using the logic estimator

To generate information about the logic area and depth of your code:

• check the Generate estimation info box on the Linker tab of the Project Settings dialog.

OR

• use the -e option on the command line compiler. For example:
handelc -e -fs -g test.hcc

The information generated is most detailed for builds targeting devices supported by the
Technology Mapper (with the technology mapper enabled).

When you compile your code a set of HTML files will be produced, containing

• line by line information on use of resources (e.g. NAND gates, or look-up
tables for mapped-EDIF).

• description of the longest combinational paths in your code.

You can access the information by opening the overview page summary.html in an
Internet browser. summary.html will be placed in the build directory for your project.

8.1.1 Logic area and depth summary

You can view logic area and depth information about your code by opening the file
summary.html in an Internet browser. The file is created in your build directory by the
logic estimator if you have selected the Generate estimation info option.

Area estimation information

• For technology mapped-EDIF: consists of the number of look-up tables, flip-
flops, memory resources and other device-specific logic resources (listed
under "Other").

• For non-mapped EDIF: consists of the number of NAND gates, flip-flops and
memory resources.

and route is needed to get exact logic and area informat

DK Design Suite user guide

www.celoxica.com Page 100

Each source file listed is linked to more detailed logic area information.

s to/from RAMs and pins, RAMs to RAMs. It also

Longest paths summary

summary.html displays estimates of the longest path for each combination of flip-flops
to/from pins, RAMs and flip-flops, pin
links to more detailed combinational path information.

8.1.2 Area and delay estimation example

DK Design Suite user guide

www.celoxica.com Page 101

8.1.3 Information on logic area

The detailed information about area provided by the logic estimator consists of the
number of resources created for each line of your source code. Totals are summarized in
the overview page, summary.html.

For each line of code, the areas that use the greatest resource in that line are highlighted
in colour. Red code provides 75% or more of the maximum, orange code 50 -75% of the
maximum, and blue 25 - 50%. Black code contributes up to 25% of the maximum.

The number of resources used is listed next to each line of code. Resources listed are:

• LUT: look-up tables (mapped-EDIF output only)

• NAND: NAND gates (non-mapped EDIF only)

• FF: Flip flops

• Mem: Memory bits

• Other: device-specific logic elements (mapped-EDIF output only):

• Altera: CARRY_SUM, CARRY
• Xilinx: MuxF5, MuxF6, MuxF7, MuxF8, MuxCY, XORCY, MultAND

DK Design Suite user guide

www.celoxica.com Page 102

Logic area estimation example

8.1.4 Information on combinatorial paths and delay

Informat
overvie ion, where
the longes at path does
not exi

To flip
flops

• •

To pins

To RAM
For eac
the path, a

ion on logic delay generated by the logic estimator is summarized on the
w page, summary.html. This contains a link to more detailed informat

t combinational path is given for the following 9 path types. If th
st, it is not included:

From flip-flops From pins From RAM

- •

• • •

• • •
h of the longest paths, there is a list of the lines of source code that contribute to

nd a list of resources used by each of these lines.

DK Design Suite user guide

www.celoxica.com Page 103

Logic depth estimation example

8.2 Optimizing code example

The optimizing code example is based on a windowing program. Windowing is a
sed to improve the results of the discrete Fourier transform. The

multiplies them by a symmetrical window.

technique which can be u
program reads in 15 samples at a time, and

The original program is optimized to run in software. The example shows how the
program can be optimized to run in hardware in two stages. The logic estimator allows
you to view the effects of each of the optimization stages.

DK Design Suite user guide

www.celoxica.com Page 104

Each v (Opt1, Opt2 and Opt3)
within

ple in DK. You need to set the
from the full version of DK, not from

Nexus PDK.

 optexample1.hcc. The program applies a series of
nput data (this is the windowing technique). The multiplications are in

ication step is in
as this can be efficient for software implementation. However, in hardware,
15 calls to the MULT macro will instantiate a separate multiplier, which is not

m WindowParameters[7], each window parameter is used twice. The
er

ogram (Opt1 project) and view logic estimation information. Then
ext version of program in Opt2.

 the optimizing code example

s generated by the logic estimator by following the
 below. You cannot target EDIF or use the logic estimator if you have Nexus PDK.

 DK by double-clicking on it.

n, then click
on EDIF below the project you want to build and press OK.

gy mapper options are selected on the

ns are selected on the Optimizations tab in

ersion of the program is contained in a different project
the same workspace: DK\Examples\Handel-C\ExampleOpt\optexample.hw.

Double-click on the workspace file to open the exam
example to build in EDIF. You can only target EDIF

8.2.1 Optimizing code example: original program

The original program is in
multiplications to i
a while loop which runs as long as data is fed into it.

The code is written with the windowing loop unrolled (each multipl
sequence)

the each of
area efficient.

Note that, apart fro
Handel-C compiler identifies this and only builds the logic for each different multipli
once. This is then shared for each of the two multiplications.

Build the ori
the n

ginal pr
look at

8.2.2 Building

If you have the full version of DK, you can build each of the versions of the optimizing
code example, and view the result
steps

Opening the example and checking project settings

1. Open the workspace file (InstallDir\DK\Examples\Handel-
C\ExampleOpt\optexample.hw) in

2. Select the project you want to build: Project>Set Active Project.
3. Set the build configuration to EDIF: select Build>Set Active Configuratio

4. Note that

• the Generate estimation info and Use Technolo
Linker tab in Project Settings.

• most of the compiler optimizatio
Project Settings.

5. To view the files in the workspace, check that you are in file view and click on
the + sign to the left of the chip icon.

DK Design Suite user guide

www.celoxica.com Page 105

6. To examine the code, double-click on the relevant Handel-C files in the

Building the example

ple by pressing F7.
e compiler optimization steps in the bottom left-

. This will say Ready when the build has

ced by the Logic estimator

 y.html in

h
tion.

8.2.3 Optimizing code example: stage 1

The second stage in optimizing the example is in optexample2.hcc.

Optimizations

In the Opt2 project, the code has been optimized by using a shared function for the
multiplier:

unsigned 32 Mult(unsigned 24 A, unsigned 8 B)
{
 return (0 @ A) * (0 @ B);
}

Results of optimization

The shared multiplier results in considerably smaller hardware. However, there is
considerable logic associated with the function calls, as the data from each of the 15 calls
has to be multiplexed to the single multiplier. This also has an associated speed penalty
as a multiplexor has some delay associated with it.

Viewing the results

Build optexample2.hcc (Opt2 project).

Open the summary.html page for this project and for the previous project (Opt1) to
compare the delay and estimation information.

You should see the following changes:

workspace pane.

1. Build the exam
You will see description of th
hand corner of the DK window
completed.

Examining the information produ

1. Browse to the EDIF directory for the project you have built. For example, if
you have built Opt1, browse to InstallDir\DK\Examples\Handel-
C\OptExample\Opt1\EDIF

2. The EDIF directory will contain a number of HTML files. Open summar
an Internet browser.
This will show you an area and delay estimation summary for the project, wit
links to more detailed informa

DK Design Suite user guide

www.celoxica.com Page 106

• the number of look-up tables (LUT) has

• the maximum logic delay from flip-flop

 decreased

to flip-flop has increased slightly

Then look at the next version of program in Opt3.

The second stage in optimi example is in .

Optim

In the operation is only
called from 'loop rolling'):

while(1)
 {
 p
 {

 }

indowed

The remaining code in the par statement makes sure that WindowCoefficient has the
correct coefficients on each step.

 {

 = 1;
== 1 && Index == 1) Direction = 0;

{
48

his is an efficient storage mechanism for relatively small numbers of values on Xilinx
devices.

8.2.4 Optimizing code example: stage 2

zing the optexample3.hcc

izations

Opt3 project the main while loop is rewritten so that the multiply
 a single point in the code (this is called

ar

 ...
 DataWindowed = (0 @ DataInReg) * (0 @ WindowCoefficient);
 ...
 }

The multiply operation takes data from DataInReg and WindowCoefficient and places it
in DataW .

par

 WindowCoefficient = WindowParameters[Index];
 DataWindowed = (0 @ DataInReg) * (0 @ WindowCoefficient);
 Index += Direction ? -1 : 1;
 if (Direction == 0 && Index == 6) Direction
 else if (Direction
 }

The window coefficients are stored in a dynamically indexed ROM:

static rom unsigned 8 WindowParameters[8] =

 0, 13, , 99, 156, 207, 242, 255,
};

T

DK Design Suite user guide

www.celoxica.com Page 107

Results

The hardware for the final version of the windowing program is smaller and faster than
either of the previous versions.

Viewing the results

pt2 and

nges:

there are now some m w
coefficients in

aximum m flip- decreased and is less
 for O

Build optexample3.hcc (Opt3 project).

Open the summary.html page for this project and for the previous projects (O
Opt1) to compare the delay and estimation information.

You should see the following cha

• the number of look-up tables (LUT) has decreased (less than for Opt2 and
Opt1)

• emory bits (M
ROM

em), due to putting the windo

• the m logic delay fro flop to flip-flop has
than that pt2 and Opt1

DK Design Suite user guide

www.celoxica.com Page 108

9 Targeting hardware

 Targeting a particular synthesis tool

You ne is enables the compiler

Generic
cs LeonardoSpectrum
ics Precision

Model Technology ModelSim (used for simulation)

ou want to simulate your code.

If you e -syn SynthesisTool option.

If you ith Active-HDL or ModelSim,

9.1

ed to specify an output style for VHDL or Verilog output. Th
to generate code that uses the features of the selected synthesis/simulation tool.

1. In the Project Settings dialog, ensure that the mode is VHDL or Verilog.

2. Select the Linker tab.

3. In the Synthesis tool pull-down list, select the appropriate tool:
Aldec Active-HDL (used for simulation)

Mentor Graphi
Mentor Graph

Synplicity Synplify

Choose Generic if you want to use a synthesis tool which is not listed. Choose Active-HDL
or ModelSim if y

are using the command line compiler, use th

are generating VHDL or Verilog code for simulation w
you ca same width and the same n only use multi-port memories if the ports have the
depth.

9.2 AL

ability
 leave it up to the user to specify where special ALU

units should be used, the compiler intelligently uses them where they will provide the
erformance over the equivalent logic.

 to ALUs

To turn L
Project Se s.

If you

-N-alumap disable ALU mapping

U mapping

Some FPGA devices possess embedded ALU primitives, which the compiler has the
to target automatically. Rather than

most improvement in p

Enabling mapping

 A U mapping on, check the Enable mapping to ALUs box on the Synthesis tab in
tting

are using the command-line compiler, use the -N option:

-N+alumap enable ALU mapping (default)

DK Design Suite user guide

www.celoxica.com Page 109

Limiting the number of mapped ALUs

The maximum number of ALUs of a specific type that the compiler targets can be set.
evice are available for a design. To limit the number
e from the Limit ALUs of type: box and enter the

p orted:

urce Supported Configurations

Xilinx Virtex-II Pro MULT18X18 Simple multiplier

Xilinx Virtex-II Pro X MULT18X18 Simple multiplier

Xilinx Virtex-4 DSP48 Simple multiplier

Xilinx Spartan 3 MULT18X18 Simple multiplier

Altera Cyclone II CYCLONEII_DSP Simple multiplier

Altera Stratix STRATIX_DSP Simple multiplier

Altera Stratix GX STRATIX_DSP Simple multiplier

Altera Stratix II STRATIXII_DSP Simple multiplier

SUPPORTED ALU PRIMITIVES AND CONFIGURATIONS PER FAMILY

9.3 Technology mapping

ctel: ProASIC and ProASIC+

• Altera: Apex 20K, 20KE and 20KC, Apex II, Excalibur, Cyclone, Cyclone II,
Stratix, Stratix GX, Stratix II

Xilinx: Virtex, VirtexE, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4,
Spartan-II, Spartan-IIE, Spartan-3

This is useful if not all ALUs on the d
of mapped ALUs, choose an ALU typ
maximum number that the compiler can target.

From the command line, use the -alulimit ALUType=Limit option.

E.g. handelc -edif -f XilinxVirtexII -p xc2v2000bg456-5 -alulimit
MULT18x18=100

Supported ALU primitives

Currently, the following ALU primitives and configurations are su p

Family ALU reso

Xilinx Virtex-II MULT18X18 Simple multiplier

The DK Technology Mapper performs technology mapping of general logic into device-
specific logic blocks.

Technology mapping is available for EDIF output for the following devices:

• A

•

DK Design Suite user guide

www.celoxica.com Page 110

Creating technology mapped EDIF

To create mapped-EDIF:

• Tick the Enable technology mapper option on the Synthesis tab in Project Settings.

OR

If you have created a project for an Actel device by selecting File>New, and then basing
the Actel chips listed, technology mapping is on by default. In all

of the number of look-up tables and
EDIF, using the logic estimator.

ing

ption moves flip-flops around in the circuit to try to meet the clock period
tement for each main function.

tween clock domains

til the respective clock periods are met.

to minimize their number in the circuit,
t conserving the specified clock periods.

g is currently only available for Altera and Xilinx devices which are supported by
 Mapper. Re-timing is enabled by default for EDIF output for Xilinx

option on the Synthesis tab in Project Settings

mand-line compiler.

 re-timing for EDIF output, and you must also select the Technology

• Use the -lutpack option in the command-line compiler

your project on one of
other circumstances, it is off by default.

The Handel-C compiler can generate an estimate
other resources that will be used by the mapped-

9.4 Retim

The retiming o
specified with the rate specification in the set clock sta

It preserves:

• timing for logic be

• timing between flip-flops and external interfaces

• flip-flops tagged with the retime specification.

It moves:

• flip-flops in other parts of the circuit un

• flip-flops are then moved around again
whils

Retimin
the Technology
devices, but not for Altera devices.

Enabling retiming

To enable retiming:

• select the Enable retiming

or

• use the -retime option with the com

You can only use
Mapper.

DK Design Suite user guide

www.celoxica.com Page 111

 If you select retiming, but have not specified a rate in your clock statement, you
will get a warning when you compile your code, and retiming will not take place.

To prevent flip-flops in a circuit being moved by the retimer, use the retime specification.

 How retiming ks

Retiming is a transformation that b the ieve a
specified clock rate whilst minimizing the numb -flops required for that circuit.

user to write H el-C designs in a si tyl thout having to
of a design. Reti ng can move re

, , inside liers ide lt from logic.

It should no longer always be necessary to rep e the Ha el-C '*' d '/' operators by
ipelined EDIF black boxes when high clock rates are required.

9.4.1 wor

alances registers in
er of flip

 a circuit in order to ach

Retiming allows the and mpler s e, wi
consider balancing the logic depth
accessible when writing Handel-C

mi
multip

gisters to places not
rs buie.g. and div

lac nd an
p

How retiming reduces delay

In the circuit shown in Figure 1 the maximum logic delay is three logic levels.

FIGURE 1

DK Design Suite user guide

www.celoxica.com Page 112

Figure 2 shows the circuit after retiming for minimum delay. The queues of input flip
flops (the slack in the circuit) have been moved forward through the LUTs. This
minimizes the logic delay whilst retaining the behaviour of the circuit. This retimed circuit
has 1/3 the maximum logic delay of the original and thus can run at three times the
clock rate.

FIGURE 2

Speed improvements from using retiming

The effect retiming will have on any given design depends on

• how well-balanced the flip-flops are in the initial circuit

• whether there are sufficient excess flip-flops to improve the pipelining.

Because of this it is hard to predict the results. The example below shows a small
program compiled with different synthesis options and different levels of pipelining.

Example program

The example calculates the square of the distance of a point from the origin

set clock = external with { rate = 40 };

// Number of pipeline stages

#define PS 4

void main()
{
 interface bus_in(unsigned 32 AIn) AIn();
 interface bus_in(unsigned 32 BIn) BIn();

 unsigned 32 Result;

DK Design Suite user guide

www.celoxica.com Page 113

 // Array of pipeline registers generating slack in the circuit

 unsigned AReg[PS];
 unsigned BReg[PS];

 interface bus_out() ResOut(Result);

 wh e
 {

 AReg[0] = AIn.AIn;

In.BIn;

 par (i = 1; i < PS; i++)

 {
 AReg[i] = AReg[i-1];
 BReg[i] = BReg[i-1];
 }
 Result = (AReg[PS-1] * AReg[PS-1]) +
 (BReg[PS-1] * BReg[PS-1]);

 }
 }
}

Xilinx place and route results

P&R with Xilinx ISE 6.1.02i for SpartanII part string 'xc2s200fg256-5'

Rate achieved
(Mhz)

Without r 34.3 1119 98

12 92 92.3 1520 1923

il (1)

 par
 {
 //read current (x, y) point into the array

 BReg[0] = B

 // move results through pipeline

Test PS Target
Clock

Clock
Rate

Number
of LUTs

Number
of FFs

etiming 4 34

Retiming 4 70 70.1 1077 825

Retiming

P&R with Xilinx ISE 6.1.02i for VirtexII part string 'xc2v1000bg575-4' .

DK Design Suite user guide

www.celoxica.com Page 114

This includes place and route runtime on a 2.4GHz Intel P4 desktop (Although DK will
have a longer run-time, this is often balanced by the reduction in time to place and
route.)

Test PS Target Clock Rate Numb
Clock Rate achieved
(Mhz) (Mhz)

er of
LUTs

Number of
FFs

P&R runtime

ing 4 45 45.4 1087 98 20 mins

56.2 1087 259 28 secs

 1086 889 64 secs

there is in
the circuit. Notice that as the speed of the design goes up, the number of flip-flops (FFs)
required also increases as they are moved from the inputs of the arithmetic operators

Retiming tends to increase the number of flipflops in a circuit as it changes the clock
 noticeable size increase in a circuit implementing a 4

d after retiming.

Without retim

With retiming 4 56

With retiming 4 100 100.2

With retiming 8 150 150.3 1489 2541 12 mins

For a circuit designed with retiming in mind, the clock frequency gains can be large.

In the case of an existing design the achieved speed-up varies considerably and depends
on the configuration of the underlying circuit, and specifically how much slack

through into the body of the logic.

Increase in flip-flops after retiming

rate. The diagrams below show a
bit adder before an

DK Design Suite user guide

www.celoxica.com Page 115

As FPGAs are rich in flipflops (generally with one available per LUT) this should not be a
problem.

DK Design Suite user guide

www.celoxica.com Page 116

FOUR-BIT ADDER BEFORE RETIMING

FOUR-BIT ADDER AFTER RETIMING

DK Design Suite user guide

www.celoxica.com Page 117

Limitations of retiming

 the

affect the final clock rate of a design.

• Flips-flops on every input or output

• Flip-flops all of the same class (share reset, clock and clock-enable wires)

• Flip-flops for initialised or uninitiliased variables

Flips-flops on every input or output

There must be a flip-flop on every input of a gate for a forward move, or every output of
a gate for a backward move.

Retiming cannot create or destroy layers of registers, and does not change the
functionality of the circuit.

Retiming can move flip-flops forwards or backwards through a gate, but only if there is a
flip-flop on every input (for a forward move) or output (for a backward move).

Although having insufficient pipeline registers is the most common issue constraining
upper speed of a design there are also a number of other restrictions that apply to
retiming moves that can

CIRCUIT WITH FORWARD MOVE NOT POSSIBLE

T it above cannot move the flip-flops forward, as one input lacks a flip-flop. he circu

CIRCUIT WITH BACKWARD MOVE NOT POSSIBLE

This circuit shows a LUT where a backward move is not possible due to one side of the
fanout lacking a flip-flop.

DK Design Suite user guide

www.celoxica.com Page 118

Flip-flops all of the same class

 For a layer of FFs to be moved through a gate, they must all be of the same class.

A retiming move is only valid if the layers of flip-flops to be moved share the same clock-
enable, reset and clock wires. Such flip-flops are said to be of the same class and any
moves which would violate this class constraint are not allowed.

Flip-flops for initialized or uninitiliazed variables

 Initialized variables in your Handel-C can restrict the retiming moves available.

Registers in a Handel-C circuit can be initialized or uninitialized depending on how they
are declared.

unsigned 4 a; // Uninitialized

s

If a register is declared as initialized, then when the flip-flops it is composed of are

 forward, it is not
always possible to compute an initial state after a backward move. Thus some backward
moves are unavailable and this can affect the maximum available clock rate.

tatic unsigned b = 13; // Initialized

moved during retiming the resultant circuit must have the same initial state.

Although initial states can always be computed when moving flip-flops

 If a register is not initialized you cannot assume that it will be zero on startup. This
is particularly true after retiming, so you should always explicitly initialize variables that
must be zero or risk your circuit failing to work as expected.

Retiming initialization examples

DK Design Suite user guide

www.celoxica.com Page 119

Retiming initialization examples

Example: moving an initialised flip-flop forward

In the example below a layer of flip-flops are moved forward through a LUT configured as
an gate. On startup the output of the LUT will be zero (as the function represented
is an AND gate, and not all the input flip-flops are initialised to one). To preserve the
i new flip-flop on the output of the
UT must be initialized to zero.

 AND

nitial state when the flip-flops are moved forward, the
L

MOVING A FLIP-FLOP FORWARD PRESERVING INITIAL RESULT

rations.

Example: moving a single initialised flip-flop backward

After a layer of flip-flops is moved backwards through a gate there can be several
possible input flip-flop configu

DK Design Suite user guide

www.celoxica.com Page 120

In the case below a zero initialized flip-flop is moved back through a four input A
there are 15 possible input combinations that will produce a zero output. DK can

tions to produc

ND gate,
 combine

these combina e uninitialized flip-flops (represented by an X as an
initializer) that can help the retiming later.

MOVING FLIP-FLOPS BACKWARDS TO PARTIALLY UNINITIALIZED STATE

Example: possible and impossible backward moves

FAN-OUT INITIALIZED TO OPPOSITE VALUES CANNOT BE MOVED BACK

The diagram above shows two flip-flops on a fanout of a LUT with opposite initializers. In
wards move, as no combination of FFs on the

esult in two different outputs.
this case it is not possible to make a back
LUT input can r

DK Design Suite user guide

www.celoxica.com Page 121

The diagram below shows the same circuit with one of the flip-flops unin
in on the fanout. Th iming is possible an

itialised. It can
be set to the value of its tw e ret d a layer of input

osen to ensure that the LUT output is '0' on startup. being
gle LUT output.

flip-flops will be ch
simultaneously present on the sin

CAN BE SEMI-INITIALIZED FANOUT MOVED BACK

egister p.
This is particularly
that must be zero circuit failing to work as expected.

Retiming cannot m

Block RAMs

s are no
They are considere tart and end points in a circuit but cannot be

oved.The flip-flops in a circuit will be moved around them in an attempt to balance the

 In DK if a r is not initialised you cannot assume that it will be zero on startu
true after retiming, so you should always explicitly initialise variables
or risk your

Retiming interactions with block RAMs and DSP blocks

ove gates through Block RAMs and DSP blocks.

Block RAM t combinational elements and there is no path delay through them.
d as sequential s

m
logic delays.

DK Design Suite user guide

www.celoxica.com Page 122

If the longest path
e able to achi ally moving the

design can balance the
rly (as

 in a design is between two Block RAMs it is possible that retiming will
not b
FFs

eve a desired clock rate. In this case consider manu
to the other side of the Block RAMs so that retimingin your

circuit prope shown in the example below).

FLIP-FLOPS MOVED MANUALLY

DK Design Suite user guide

www.celoxica.com Page 123

DSP blocks

SP blocks frequently have combinational paths through them. Although DK cannot
through the DSP blocks it is able to balance FFs around the blocks to minimise

e overall circuit delay.

D
move FFs
th

DSP CIRCUIT WITH MAXIMUM DELAY OF 28NS

 which the maximum delay is now The figure below shows the circuit after retiming, in
10ns.

DK Design Suite user guide

www.celoxica.com Page 124

This ha lops around the DSP block. s been achieved by moving flip-f

DSP CIRCUI IMUM DELAY OF 10NS

Retiming

Retimin dges between clock domains in order to preserve the
asynchron

T AFTER RETIMING WITH MAX

 between clock domains

g locks all flip-flops on e
ous behaviour of the circuit.

CIRCUIT WITH FLIP-FLOPS IN TWO DIFFERENT CLOCK DOMAINS

DK Design Suite user guide

www.celoxica.com Page 125

The cir ins (represented by two
differe
domain

cuit above shows flip-flops in two different clock doma
nt colours). The diagram below shows the circuit with the flip-flops between
s locked (coloured red) and therefore unmovable by retiming.

LOCKED FLIP-FLOPS BETWEEN CLOCK DOMAINS

Retiming around interfaces

Retiming locks a layer of flip-flops around interfaces to prevent timing to peripherals
being changed. The closest layer of flip-flops to an interface are locked.

FLIP-FLOPS LOCKED DIRECTLY ADJACENT TO INTERFACE

DK Design Suite user guide

www.celoxica.com Page 126

The flip-flops are prevented from moving in order to preserve the asynchronous timing
between a
which it

 Handel-C design and any peripherals or external black-box components with
 is communicating.

FLIP-FLOPS LOCKED WITH LOGIC SEPARATING THEM FROM INTERFACE

Retiming clock period accuracy

DK has a comprehensive model of the delays for all combinational elements that can be
created in a circuit. It also has a model of the routing delays such that the delay of an
interconnection between circuit elements is approximated as a function of the size of the

 and route. As a result the retiming cannot
always know the exact speed of a design.

Retiming can be disabled on a per-clock-domain basis, or on a per- register basis by
adding the spec retime = 0 to the appropriate source line as shown below:

 domain will be moved

 = 0 };

fanout. However this routing model is only approximate as the true routing delay of a
circuit cannot be known until after place

The routing model becomes less accurate mainly when a target device is almost full or
when there are some very high fanout nets but under normal circumstances is fairly
accurate.

Turning off retiming selectively

// No registers in this clock

set clock = external with { retime = 0, rate = 100 };

// None of the FFs associated with this register will be moved

unsigned 64 AReg with { retime

Retiming can be turned off on a per-clock-domain basis to speed up the compilation of a
circuit for instance when a certain domain already runs at the desired clock rate,or when
a domain achieves the desired clock period after retiming and that domain is not being

DK Design Suite user guide

www.celoxica.com Page 127

changed in ongoing development (although retiming will need to be enabled for that
domain for a release build).

iming on individual registers may sometimes be required near interfaces. If
djacent FFs on an input interface to prevent metastability the default

 metastability resolver to be broken. In this case the second can
be made immovable with the specification and the circuit behaviour

hmetic hardware in Actel

In the DK GUI, open Synthesis tab in s (you need t e
) or

using the command-line compiler, use the -N option:

imizes speed

 using the Build>Set

e often corresponding to a variable or signal in

MyVar_0 MyVar_7 ere are other named
nets that are generated internally by the DK and do not refer back to constructs in the

Turning off ret
there are two a
behaviour of the compiler is to lock only the closest allowing the second to be moved
through the logic and the

retime = 0
preserved.

9.5 Optimizing arit
devices

If you are targeting Actel ProASIC or ProASIC+ devices, you can optimize arithmetic
hardware for area or for speed in EDIF output from your Handel-C code.

the Project Setting o select a file in th
left pane to see this tab). In the Expand netlist for: box, choose Area (to minimize area
Speed (to maximize speed). The default setting is Speed.

If you are

-N+area minimizes area
-N+speed max

The area and speed settings affect adders, subtractors, multipliers and dividers in Actel
devices. They have no effect for Altera and Xilinx devices.

9.6 Targeting hardware via EDIF

To target hardware via EDIF, you set up your project to target EDIF
Active Configuration command. This compiles directly to an .edf file which can be passed to
your place and route tools. You cannot compile Handel-C to EDIF from Nexus PDK.

9.6.1 EDIF block and net names

Named nets

Named nets are assigned a specific nam
Handel-C. For example, suppose Handel-C declares the following variable:

unsigned 8 MyVar;

then the EDIF will contain 8 nets named to . Th

DK Design Suite user guide

www.celoxica.com Page 128

Handel-C source. If a net is not associated with a name, its referred to as unnamed and
it will take the format described below. Furthermore if two named nets take the same
name, they will be ou

tput as if they are unnamed in order to distinguish between them.

Nets connected to Actel/Altera external port interfaces and Xilinx pad blocks (external

{PADIN | PADOUT | PADTS}_Name_portName_Index

interface bus_out() myBus(unsigned 8 out = x);

will create nets, named PADOUT_myBus_out_0 to PADOUT_myBus_out_7.

Unnamed nets

Unnamed nets take this format:

W [G][T]Id_filename_lineNumber [_functionName] [_netName]

where:

W Indicates that the current name is for a net (as opposed to a block).
G Optional. Indicates that a net is global and crosses file or function

boundaries.
T Optional. Indicates that the block or net is at the top level of the

design.
Id The unique Id for the net within its name scope.
filename The name of the file containing the source code from which the

s part of the name scope for the
block/net.

lineNumber

his
n result from code not belonging to any

function.
netName The name of the net. This is only present when there are other nets

with this name.

Mixing old and new versions of code (by linking in libraries or object files) may mean that
everything has a single name scope.

Examples:

WGT1_s4c_4_ClockInput
WGT9_s4c_26_CforkIn
WGT6_s4c_28_SeqChain
WGT8_s4c_29_UnaryOpOut_I_0
WGT7_s4c_29_UnaryOpOut_I_1
W1_s4c_25_main

pins) take the name of the corresponding Handel-C interface:

For example,

block/net was generated. It form

The line number in the source code from which the net was generated.
functionName The name of the function containing the source code from which the

net was generated. It forms part of the name scope for the net. T
may be missing as nets ca

DK Design Suite user guide

www.celoxica.com Page 129

WT1_s4c_4
W11_s4c_20_x_Out_I_0

Blocks

Names of blocks take this format:

B Id_filename_lineNumber [_functionName] [_blockType]

where:

B Indicates that the current name is for a block (as opposed to a net).
Id The unique Id for the block within its name scope.
filename The name of the file containing the source code from which the block

was generated. It forms part of the name scope for the block.
lineNumber The line number in the source code from which the block was

generated.
functionName The name of the function containing the source code from which e

block was generated. It forms part of the name scope for the block.
ging to

_Name_portName_Index

:

PADIN_s4c_19_158_in_1
PADIN_s4c_19_159_in_0

W10_s4c_20_x_Out_I_1

 th

This may be missing as blocks can result from code not belon
any function.

blockType A string identifying the type of block in question (i.e. whether it is a
register, an AND gate, a pad, etc).

Mixing old and new versions of code (by linking in libraries or object files) may mean that
everything has a single name scope.

Examples:

BT2_s4c_4_CLKBUF
B1_s4c_17_DTYPE0
B5_s4c_17_OR
B8_s4c_19_IBUF
B22_s4c_22_BRAM
B1_s4c_25_main_DTYPE1
B5_s4c_29_main_NOT

Interfaces

The names of Actel/Altera external port interfaces and Xilinx pad blocks (external pins)
take the following format:

{PADIN | PADOUT | PADTS}_filename_lineNumber [_functionName]

Examples

PADIN_s4c_4_ClockInPin_0

DK Design Suite user guide

www.celoxica.com Page 130

PADOUT_s4c_20_163_Param0_1
PADOUT_s4c_20_164_Param0_0

rt
inte ocks take their name from the pin location.

For example,

ta = {"P0", "P1",

ing wire name format in EDIF

re names in EDIF using the Handel-C busformat
specification.

"B" B[N:0]

signals_to_HC[1]

If you are targeting Actel devices, you need to import the timing constraints file
generated by DK into Actel Designer.

However, if the pins of the interface are constrained using the data specification, the po
rfaces and bl

interface bus_out() myBus(unsigned 8 out = x) with {da
"P2", "P3", "P4", "P5", "P6", "P7"}};

will create ports or pad blocks, named P0 to P7.

9.6.2 Specify

You can specify the format of floating wi

This allows you to use the formats:

BI B_I B[I] B(I) B<I>

where B represents the bus name, and I the wire number.

To specify the format of bus wire names use

Example

interface port_in(int 4 signals_to_HC with
 {busformat="B[I]"}) read();

This code would produce wires:

signals_to_HC[0]

signals_to_HC[2]
signals_to_HC[3]

9.6.3 Setting up place and route tools

The Altera EDIF compiler requires a library-mapping file. This is supplied as
handelc.lmf.

DK Design Suite user guide

www.celoxica.com Page 131

9.6.4 Preparing MaxPlus II to to compile Handel-C EDIF

n files.

ath name for the handelc.lmf file
(installed in InstallDir\DK\Lmf).

ring Quartus to compile Handel-C EDIF

sing

ist generated

t Custom as the Tool name from the drop-down list.

Select the Tools>Tcl scripts. Expand the Projects folder, select the TCL file to run
and click Run.
(The TCL files in the Projects folder will be those in the same directory as your
EDIF files for the project).

1. Start MaxPlus II.

2. Open MaxPlus II>Compiler.
3. Open the Handel-C-generated EDIF netlist, and any other desig

4. With the compiler selected, select Interfaces>EDIF Netlist Reader Settings.
5. In the dialog box, specify Vendor as Custom.

6. Click the Customize>> button.

7. Select the LMF #1 radio button. Set up the p

9.6.5 Prepa

You need to set up Quartus in different ways depending on whether you are using
version 2.1 (or older) or 2.2 (or newer), and whether you have compiled your EDIF u
DK, or used a synthesis tool to convert DK VHDL or Verilog to EDIF.

DK EDIF, Quartus version 2.2 (or newer)

1. Start Quartus.

2. Create or open the project in which you want to compile the netl
by Handel-C.

3. Add the Handel-C-generated EDIF netlist, and any other design files, to the
project.

4. Select the Assignments>EDA Tool Settings menu command.

5. In the EDA Tool Setting pane, select Design entry/synthesis as the Tool Type.
6. Selec

7. Set the Library Mapping File to specify the handelc.lmf file installed in
InstallDir\DK\Lmf.

8. Apply the TCL script that was generated by DK when compiling the Handel-C
code to EDIF. The script file has the same file name as the compiled file.

9. To apply the script:

Enter the following command in the Quartus console window:
source hcedif.tcl
where hcedif is the name of the file compiled to EDIF.

OR

DK Design Suite user guide

www.celoxica.com Page 132

You can now do the placing and routing.

DK EDIF, Quartus version 2.1 (or older)

1. Start Quartus.

2. Create or open the project in which you want to compile the netlist generated
by Handel-C.

3. Add the Handel-C-generated EDIF netlist, and any other design files, to the
project.

4. Select the Project>EDA Tool Settings menu command.

5. In the dialog box, use the pull-down list to set Custom as the Design entry/synthesis
tool.

6. Click Settings…

7. Set the Library Mapping File to specify the handelc.lmf file installed in
InstallDir\DK\Lmf.

8. Apply the TCL script that was generated by DK when compiling the Handel-C
code to EDIF. The script file has the same file name as the compiled file.

9. To apply the script:

Enter the following command in the Quartus console window:

where hcedif is the name of the file compiled to EDIF.

OR

DK HDL converted to EDIF using a synthesis tool

If you use DK to generate VHDL or Verilog output, and then use a synthesis tool such as
LeonardoSpectrum to compile this to EDIF, you need to select the 'Power-Up Don't Care'
option in Quartus (v2.1 or v2.2):

If you are using the command line:

• In the Tcl console window type:
project add_assignment “” “” “” “” ALLOW_POWER_UP_DONT_CARE Off
Then press Return.

If you are using the GUI:

• For Quartus II v2.1:
Select Project>Option & Parameter Settings
Then choose the ‘Power-Up Don’t Care’ from the ‘Existing option settings:’ list,
and set it to ‘Off’

• For Quartus II v2.2:
Select Assignments>Settings>Default Logic Options Settings

source hcedif.tcl

Select the Tools>Run script option and specify the TCL file.

You can now do the placing and routing.

DK Design Suite user guide

www.celoxica.com Page 133

Then choose the ‘Power-Up Don’t Care’ from the ‘Existing option settings:’ list,
and set it to ‘Off’

This only needs to be done once for the whole project. You do not need to set this option
if you are compiling EDIF generated directly by DK.

9.6.6 Importing timing constraint files into Actel Designer

To import .gcf files for Actel ProASIC and ProASIC+:

1. Start Designer.

2. Create or open the design in which you want to compile the netlist generated
by Handel-C.

3. Import the Handel-C-generated EDIF netlist, and any other design files, to the
project.

4. Use File>Import... to import the generated .gcf file that includes the timing
constraints.

uting.

ulation
tools. You cannot compile L fro K.

You the synthesis tool that you are using the Linker tab in Project Settings. If

Handel-C code or you want to target Xilinx

-
ion is no longer available. All VHDL output now has names generated

el-C variable names.

If you want to co-simulate Handel-C with VHDL code you can use the Co-simulation

5. Compile the design.

6. Ensure that you select Timing driven for the layout.

7. Lay out the design.

You can now do the placing and ro

9.7 Targeting hardware via VHDL

To target hardware via VHDL, set the Build>Set Active Configuration option to VHDL. This
compiles directly to a .vhd file which can be passed to your synthesis or sim

 Handel-C to VHD m Nexus PD

 must specify
you wish to simulate your VHDL, select ModelSim as the tool used.

The code generated is structured and relates the Handel-C function names to the VHDL
entity names.

If you want to simulate VHDL produced from
devices, you need to link to a ROC file.

In previous versions of DK, you could generate less readable VHDL by un-checking the
Generate Debug information box on the Compiler tab of Project Settings or using the command line
g option. This opt
from Hand

Bridge for ModelSim provided in Celoxica's Platform Developer's Kit.

DK Design Suite user guide

www.celoxica.com Page 134

9.7.1 VHDL file structure

Each Handel-C source file is mapped to a VHDL file. Each Handel-C function is mapped to
an entity and architecture. There is also a top-level VHDL file which links the design
entities together and contains global design ports. Macros are converted to inlined VHDL.
Source files consisting only of macro expressions or macro procedures will be converted
to an empty file and then deleted.

In previous versions of DK you could compile your VHDL without debug information to
produce less readable output. This option is no longer available; all VHDL output now has
names generated from Handel-C variable names. The -g option now has no effect for
VHDL output.

File names

VHDL file names depend on whether you build your files using the DK GUI, or from the
command line compiler.

If you use the command line compiler, you specify the name of your top-level output file
using the -o option. For example:

handelc -vhdl -o OutputFile

will produce a top level file called OutputFile.vhd

If you are using the GUI, the top-level file is called ProjectName_top.vhd.

Other files are named after the Handel-C files: FileName.suffix source files became
FileName_suffix.vhd. For example, UsefulFile.hcc becomes UsefulFile_hcc.vhd.

If there is more than one source file with the same name, further files are called
FileName_suffix_N.vhd, where N increments from 1.

Entities

The top-level VHDL file contains an entity with the same name as this file (without the
.vhd extension).

Each VHDL file corresponding to a Handel-C source file starts with an entity containing
global logic defined within that file called FileName_suffix. For example, the global
variables in UsefulFile.hcc are stored in the entity UsefulFile_hcc.

Functions are mapped onto entities called FileName_suffix_FunctionName. For
example, a function called MyFunction defined in MySource.hcc becomes an entity called
MySource_hcc_MyFunction.

Shared functions have a set of inputs for each use of the function.

inline functions have separate entities for each use of the function. The first instance of
the function generates an entity as above. Later instances have numbers appended to
the name, starting at 1. For example, the fourth instance of the inline function
FastFunction in UsefulFile.hcc becomes UsefulFile_hcc_FastFunction_3.

DK Design Suite user guide

www.celoxica.com Page 135

Global reset

A global reset line is connected to all flip-flops/registers in the design. You can specify a
reset pin using the set reset construct.

or Altera or Xilinx
devices, the registers in the design are reset on configuration. Altera devices have the

 using the data specification, a reset pin (called Data) is added to
will

 project shown below to VHDL using the GUI:

You must specify a reset pin for Actel devices. If no reset is specified f

reset wire connected to ground, Xilinx devices use a ROC block.

If you specify a reset
the top-level entity of the design. If you specify a reset without a pin, the reset pin
be called ResetPin.

9.7.2 Naming of VHDL files and entities

If you compile the Handel-C

MyProject

MyFile.hch

Declarations of
 FunctA and

FunctB

Sourc

<MyFi

m
calling

and

#include
le.hch>

Global
variables etc.

Definitions
of FunctA

and
FunctB

ain function,
 FunctA
FunctB

MyFile.hcc

e1.hcc

DK Design Suite user guide

www.celoxica.com Page 136

the following VHDL files and entities are produced:

VHDL project

Entities:

MyFile_hcc

Entities:

hcc

Entity:
MyP

Source1_hcc.vhd MyFile_hcc.vhd MyProject_top.vhd

Source1_
(contains global

logic)

Source1_hcc
_main

roject
_top

(links other
entities and

contains
global design

ports)

MyFile_hcc
_FunctA

MyFile_hcc
_FunctB

If you compile the files from the command line, the top-level file and its entity are named

es

ntity generated from a Handel-C function will have the following inputs and outputs:

after the output file name you specify using the -o option. The other file and entity
names are the same as those shown above.

9.7.3 Mapping Handel-C functions to VHDL entiti

An e

There is an input port for each parameter to the function. It is given the name
CallN_parameterName and is of the width of that parameter. For example, the function
add(int 8 a, unsigned 16 b) in the file maths.hcc would be converted to an entity

DK Design Suite user guide

www.celoxica.com Page 137

maths_hcc_add. The first use of the function would generate an 8-bit port called Call0_a
and a 16-bit port called Call0_b.

When t
function a
the result a

The CallN

Global
variables,

The re ation
or specifie

The name of the clock
clock divide is divided by 1, the port will be called . If the clock divide is
more than

Timin

The timing

clk_d

Call0_RE

Result (a
entity delay)

Each call to a shared function will duplicate the numbered ports (e.g. Call0_RE) with an
incremented number. The result lines are the same for each call to the function.

he function is called, the CallN_RE port is set high. One clock cycle before the
h s completed, the Result_WE port is set high. When the function completes,

ppears on the Result port, and the Result_End line is set high.

_Reset port is only there if this call is from a try... reset statement

ports are produced from signals that cross function boundaries, such as global
ground and power. The names of global ports are prefixed with globals_.

set port is connected to the global reset line, which is either reset on configur
d using the set reset construct.

port depends on whether you specify a clock divide. If there is no
, or the clock clk
1, the name of the port will be clk_divN, where N is the value of the divide.

g

 for the entity signals is shown below.

function called
 here

fast clock
iv1

Result_WE

result register

fter

parame
e.g. Call

ters
0_A

Result_End

DK Design Suite user guide

www.celoxica.com Page 138

When the Result_WE signal is asserted, the result can be written to the result regist
the next rising clock edge.

The signal is asserted in the clock cycle before the entity logic is released.

er on

Result_End

 Verilog. This
tools.

pecify the synthesis tool that you are using the Linker tab in Project Settings. If
ou wish to simulate your Verilog, select ModelSim as the tool used.

del-C function names to the Verilog
module names.

t Xilinx

able Verilog by un-checking the
-

 has names generated
from Handel-C variable names.

If you want to co-simulate Handel-C with Verilog code you can use the Co-simulation

Each Handel-C source file is mapped to a Verilog file. Each Handel-C function is mapped
s the design modules together
lined Verilog. Source files

consist empty
file and

In prev rmation to
produc put now has
names now has no effect for
Verilog output.

File names

Verilog file names depend on whether you build your files using the DK GUI, or from the
command line compiler.

9.8 Targeting hardware via Verilog

To target hardware via Verilog, set the Build>Set Active Configuration option to
compiles directly to a .v file which can be passed to your synthesis or simulation
You cannot compile Handel-C to Verilog from Nexus PDK.

You must s
y

The code generated is structured and relates the Han

If you want to simulate Verilog produced from Handel-C code or you want to targe
devices, you need to link to a ROC file.

In previous versions of DK, you could generate less read
Generate Debug information box on the Compiler tab of Project Settings or using the command line
g option. This option is no longer available. All Verilog output now

Bridge for ModelSim provided in Celoxica's Platform Developer's Kit.

9.8.1 Verilog file structure

to a module. There is also a top-level Verilog file which link
and contains global design ports. Macros are converted to in

ing only of macro expressions or macro procedures will be converted to an
 then deleted.

ious versions of DK you could compile your Verilog without debug info
e less readable code. This option is no longer available; all Verilog out
 generated from Handel-C variable names. The -g option

DK Design Suite user guide

www.celoxica.com Page 139

If you
using the -

handelc -verilog -o OutputFile

will produce a top level file called OutputFile.v

If you are using the GUI, the top-level file is called ProjectName_top.v.

Other files are named after the Handel-C files: FileName.suffix source files became
FileName_suffix.v. For example, UsefulFile.hcc becomes UsefulFile_hcc.v.

If there is more than one source file with the same name, further files are called
FileName_suffix_N.v, where N increments from 1.

Modules

The top-level Verilog file contains a module with the same name as this file (without the
.v extension).

Each Verilog file corresponding to a Handel-C source file starts with a module containing
global logic defined within that file called FileName_suffix. For example, the global
variables in UsefulFile.hcc are stored in the entity UsefulFile_hcc.

Functions FunctionName. For
example, a lled
MySource_

Shared

inline fun
of the func ded
to the nam For example, the fourth instance of the inline function
FastFu cc_FastFunction_3.

Global reset

an specify a
reset pin using the set reset construct.

gisters in the design are reset on configuration. Altera devices have the

use the command line compiler, you specify the name of your top-level output file
o option. For example:

are mapped onto entities called FileName_suffix_
 function called MyFunction defined in MySource.hcc becomes an entity ca
hcc_MyFunction.

 functions have a set of inputs for each use of the function.

ctions have separate modules for each use of the function. The first instance
tion generates an module as above. Later instances have numbers appen
e, starting at 1.

nction in UsefulFile.hcc becomes UsefulFile_h

A global reset line is connected to all flip-flops/registers in the design. You c

You must specify a reset pin for Actel devices. If no reset is specified for Altera or Xilinx
devices, the re
reset wire connected to ground, Xilinx devices use a ROC block.

If you specify a reset using the data specification, a reset pin (called Data) is added to
the top-level module of the design. If you specify a reset without a pin, the reset pin will
be called ResetPin.

DK Design Suite user guide

www.celoxica.com Page 140

9.8.2 Naming of Verilog files and modules

 to Verilog using the GUI: If you compile the Handel-C project shown below

MyProject

MyFile.hch

Declarations of
 FunctA and

FunctB

MyFile.hcc

Global
riables etc.

FunctB

#include
<MyFile.hch> va

Definitions
of

main function,
FunctA
and

calling FunctA
and FunctB

Source1.hcc

The following Verilog files and modules are produced:

Verilog project

Source1_hcc.v MyFile_hcc.v MyProject_top.v

Modules:

MyFile_hcc

ile_hcc
FunctB

Modules:

Source1_hcc
(contains global

MyFile_hcc
_FunctA

logic)

Source1_hcc
_main MyF

_

Module:
MyProject

_top

(links other
modules and

tains
l design

ports)

nd its module are
after the output file name you specify using the -o option. The other file and

 same as those shown above.

con
globa

If you compile the files from the command line, the top-level file a
named
module names are the

DK Design Suite user guide

www.celoxica.com Page 141

9.8.3 Mapping Handel-C functions to Verilog modules

A mod uts: ule generated from a Handel-C function will have the following inputs and outp

There is an input port for each parameter to the function. It is given the na
CallN_parameterName and is of the width of that parameter. For example,

me
 the function

ort called Call0_b.

CallN_Reset port is only there if this call is from a try... reset statement

daries, such as global
variables, ground and power. The names of global ports are prefixed with globals_.

ded by 1, the port will be called clk. If the clock divide is
ll be clk_divN, where N is the value of the divide.

add(int 8 a, unsigned 16 b) in the file maths.hcc would be converted to an module
maths_hc_add. The first use of the function would generate an 8-bit port called Call0_a
and a 16-bit p

Each call to a shared function will duplicate the numbered ports with an incremented
number. The result lines are the same for each call to the function.

When the function is called, the CallN_RE port is set high. One clock cycle before the
function has completed, the Result_WE port is set high. When the function completes,
the result appears on the Result port, and the Result_End line is set high.

The

Global ports are produced from signals that cross function boun

The reset port is connected to the global reset line, which is either reset on configuration
or specified using the set reset construct.

The name of the clock port depends on whether you specify a clock divide. If there is no
clock divide, or the clock is divi
more than 1, the name of the port wi

DK Design Suite user guide

www.celoxica.com Page 142

Timing

fast clock
clk_div

lt_

 (aft
 dela

1

Call0_RE

Resu WE

pa
e.

ramete
. Call0

rs
_Ag

Result er
entity y)

Result_End

result register

function called
 here

tten to the result register on

The Re ed.

When the Result_WE signal is asserted, the result can be wri
the next rising clock edge.

sult_End signal is asserted in the clock cycle before the module logic is releas

DK Design Suite user guide

www.celoxica.com Page 143

10 Tutorial examples

10.1 Example 1: Accumulator example

The workspace for Handel-C tutorial example 1 is in ndel-

s the

le1 directory) and
results are written to a file sum_out.dat (in the Example1 directory).

10.1.1 Compiling and simulating example 1

1. Open the workspace file (DK\Examples\Handel-C\Example1\Example1.hw) by
double-clicking on it. DK starts with the Example1 workspace open.

2. Check that you are in File View in the Workspace window and click on the + sign
to the left of the chip icon to see what files are within the project.

3. To examine the code, double-click the file sum.hcc in the Workspace window.
If you cannot see it, you can make the Workspace window larger by dragging
its borders.

4. Build the project in Debug mode by selecting Build Example1 from the Build menu.
Messages from the compiler appear in the output window. They give an
approximation of the number of hardware gates required to implement the
program.

5. Start the debugger by pressing F11 to step through the simulation, or F5 to
run to the end. The simulator reads the contents of values from the file
sum_in.dat, sums them, and writes the result to the file sum_out.dat.

To watch the accumulation progressing in the variable sum, open a Watch
window (select View>Debug Windows>Watch or type Alt+3) and type sum in the

7. Examine the files to ensure that the output file contains the correct result. If

InstallDir\DK\Examples\Ha
C\Example1.

The program takes a number of values from a file and calculates the sum of those
values. It illustrates the basics of producing a Handel-C program and demonstrate
use of the simulator.

The data is read from a sample file sum_in.dat (provided in the Examp

window.

6. The simulator terminates at the end of the program.

you wish to change the values in sum_in, ensure that each value is placed on
a separate line.

DK Design Suite user guide

www.celoxica.com Page 144

10.2 Example 2: Pipelined multiplier example

InstallDir\DK\Examples\Handel-

u initialization values to the arrays of leftOps and rightOps,

sult of a 16-bit by 16-bit multiply using
ion. The multiplier produces one result per clock cycle with a latency of 16

his means that although any one result takes 16 clock cycles, you get a
 1 multiply per clock cycle. Since each pipeline stage is very simple,

 and a much higher clock rate is achieved than would be
le cycle multiplier.

s pass through each stage of the multiplier in the sum
 on 2 multiplied by the operand if required. The LSB of the a

ther to add this value or not.

 are fed in on every clock cycle on signals leftOp and rightOp. Results appear
clock cycles later on every clock cycle on signal result.

st code details

/*
 * Index at end of array macro
 */
#define I
 select(exp2(width(Index)) == (ArrayLimit), \
 !(

The In f an
array, whatever width compiler. In most
cases, flows, the test will compare the
overflow v
width o inst 4, the index will
old the value 0 (as the most signif ost) and the compiler will generate

es against 0 instead of against
4.

 has been
incremented.

The workspace for Handel-C tutorial example 2 is in
C\Example2.

The program performs multiplication using a replicated parallel structure to create a
pipeline.

The operands sed are the
such that the results[n] = leftOps[n] * rightOps[n].

This multiplier calculates the 16 LSBs of the re
long multiplicat
clock cycles. T
throughput of
combinational logic is shallow

ete singpossible with a compl

At each clock cycle, partial result
narray. Each stage adds b

operand at each stage tells the multiply stage whe

Op
16

erands

10.2.1 Example 2: Index array te

ndexAtArrayEnd(Index, ArrayLimit) \

Index), ((Index) == (ArrayLimit)))

dexAtArrayEnd macro tests if the index of size ArrayLimit is at the end o
the index counter has been assigned by the

this is a normal comparison, but if the index over
alue. An example is an index of size 4. The compiler will assign the index a

f 2 bits (to store the values 0 – 3). When it is compared aga
icant bit has been lh

an error. In this case, the IndexAtArrayEnd macro compar

This implies that such a comparison cannot be made at the start of the cycle, when
element zero is being processed, but only at the end of the cycle after the index

DK Design Suite user guide

www.celoxica.com Page 145

10.2.2 Compiling and simulating example 2

To compile and simulate the pipelined multiplier, open the workspace in the
 directory and select Build Example2 from the Build menu. You

w) by

2. Check that you are in File View in the Workspace window and click on the + sign

ot see it, you can make the Workspace window larger by

ode, by selecting Build Example2 from the Build

.

ss F11

 yellow
arrow (current thread) should be next to a line within the parMult() function
in the lower part of the code in parmult.hcc. If it is not, right-click on one of

hread.

Each time you press F10, one stage of the pipeline will be completed. After 18
clock cycles, the first result is available, and subsequent results are provided

9. To stop simulation, select Debug>Stop Debugging (Shift F5). The simulation will

ples\Handel-

le shows a
aining independent main functions which are implemented independently in

hardware.

Examples\Handel-C\Example2
can then start the debugger.

1. Open the workspace file (DK\Examples\Handel-C\Example2\Example2.h
double-clicking on it. DK starts with the Example2 workspace open.

to the left of the chip icon to see what files are within the project.

3. To examine the code, double-click the file parmult.hcc in the Workspace
window. If you cann
dragging its borders.

4. Build the project in Debug m
menu. Messages from the compiler appear in the output window. They give an
approximation of the number of hardware gates required to implement the
program

5. Start the debugger by pressing F11 to step through the simulation. Pre
again to proceed to the next step.

6. Check that you are following a thread in the parMult() function. The

the grey arrows next to the parMult() function and select Follow T
7. Open the Variables window (View>Debug Windows>Variables) and select the Locals

tab.

8. View the values propagating through xx (intermediate value of left operand)
by clicking on the + sign next to xx and the pressing F10 several times. You
can also view the values in yy (intermediate value of right operand) and rr
(intermediate result).

on successive clock cycles.

not stop by itself.

10.3 Example 3: Queue example

The workspace for Handel-C tutorial example 3 is in InstallDir\DK\Exam
C\Example3.

The example shows how to create parallel tasks and how to communicate between those
tasks. It also illustrates arrays of variables and arrays of channels. The examp
project cont

DK Design Suite user guide

www.celoxica.com Page 146

There are two source files: queue.hcc handles the queue function, while main.hcc
provides I/O facilities. Definitions common to both files are given in queue.hch. They

ng a simple four-place queue. Each task holds one piece of data and has
an input channel connected to the previous queue location and an output channel

At each iteration, the data moves one place up the queue. The program executes an

ternal variables are undefined and inferred by the
compiler.

10.3.1 Example 3: detailed explanation

A replicated pipeline is used to implement the queue. The first and last entries in the
using a select expression or an ifselect statement

mpile time.

ing example 3

2. Build the example in Debug mode by selecting Build>Build Example3.
3. Press F11 to step into the program in the debugger.

both have a clock set (in this case, the signal on pin 1 is used for both functions).

The queue function code illustrates the use of parallel tasks and channel communications
by implementi

connected to the next queue location.

infinite loop, and you must use Stop Debugger to terminate the simulation.

The queue presented here is parameterized on the width of the input and output
channels because the width of all in

This example uses four parallel tasks, each containing one word of data. At each
iteration, one word is passed from one task to another in a chain like this:

State [0] --> State [1] --> State [2] --> State [3] -->

The links between the processes are entries in the links array of channels. Input and
output to and from the system is handled by the main function.

Communication between the two functions is handled by an array of channels.

The queue only reads data and writes data on every other clock cycle.

pipeline are treated differently by
to differentiate them at co

10.3.2 Compiling and simulat

1. In the Examples\Handel-C\Example3 directory, double-click on the
workspace file Example3.hw.

DK Design Suite user guide

www.celoxica.com Page 147

4. When you start debugging, you will be asked to select a clock to follow. Select
le name queue.hcc). the queue function clock (tagged with the fi

5. s or press Alt+4. Then
select the Locals tab at the bottom of the window.

p through the code, and watch the values change.

6. To watch the queue in the debugger, open the Watch window (View>Debug
ow and type in
y a list of the array

The wo s\Handel-
C\Exam

The cli
communic e
clients and
dummy se nt requests could be processed by a real
server

The server
assignmen

There is a pair of s. These functions merely select valid requests
from an array and send them to the server.

To view local variables, select View>Debug Windows>Variable

The Variables window shows the variables local to the function. Press F11
repeatedly to ste

Windows>Watch or press Alt+3). Click at the top of the wind
state. Click on the + next to the state variable to displa
elements. Press F11 repeatedly to step through the code, and watch the
values change.

7. To stop simulation, select Debug>Stop Debugging.

10.4 Example 4: Clients / server example

rkspace for Handel-C tutorial example 4 is in InstallDir\DK\Example
ple4.

ents and server are implemented as independent pieces of hardware,
ating via channels. The server reads data from an array of channels from th
 puts the results in a queue as they arrive. They are read from the queue by a
rvice routine. This is where the clie

routine.

 clock runs at half the speed of the client clock to allow time for complex
ts during request processing.

 identical client function

DK Design Suite user guide

www.celoxica.com Page 148

10.4.1 Example 4: code details

The intern nd
queueOut)
queued da
same clock

typedef s

 unsigned int queueOut;

 {
 w
 rom int DataWidth dataOut[MaxQueue];
 } val

} Queue;

A prialt ds
the data if
doesn't ha e data. The use of a loop ensures that each
client is poll t, clients
further iority clients
could a

 while
 {
 i

 prialt

 case clientReq[i] ? value:

 break;

al queue is implemented in a structure consisting of two counters (queueIn a
 which are used to test how full the queue is, and an mpram containing the
ta. Use of an mpram allows the queue to be written to and read from in the
 cycle.

truct
{
 unsigned int queueIn;

 mpram

om int DataWidth dataIn[MaxQueue];

ues;

 in a do while loop checks whether each client is ready to send data, and rea
 it is ready. The use of prialt with a default case ensures that the server
ve to wait for each client to hav

ed. If a single prialt statement were used with cases for each clien
 down the prialt statement might never be polled, because higher-pr
lways grab the resource.

 (1)

 = 0;
 do
 {

 {

 QueueInsert(reqQueue, value);

 default:
 break;
 }
 i++;
 } while (!IndexAtArrayEnd(i, MaxClients));
 }

DK Design Suite user guide

www.celoxica.com Page 149

10.4.2 Compiling and simulating example 4

.hw in the Examples\Handel-

lecting Build>Build Example4.

1. Double-click on the workspace file Example4
C\Example4 directory.

2. Build the example in Debug mode by se

3. Step into the program within the debugger by pressing F11.

4. When you start debugging, you will be asked to select a clock to follow (the
client clock or the server clock). Choose the client clock by selecting it.

5.

6. will see that the

7. The program executes an infinite loop, and you must stop the debugger (press

10.5 Example 5: Microprocessor example

\DK\Examples\Handel-

In this e microprocessor. This microprocessor
executes a
sequence.

-C to develop processors capable of executing
 with the minimum of effort.

Step through the code by pressing F11.

If you open the Clocks/Threads window (press Alt + 5), you
client clock advances more quickly than the server clock.

Shift + F5) to terminate the simulation.

The workspace for Handel-C tutorial example 5 is in InstallDir
C\Example5.

 example, Handel-C implements a simpl
program stored in ROM to calculate members of the Fibonacci number

It is equally possible to produce processors which contain specialized instructions for any
application. Thus, you could use Handel
programs for specialized applications

DK Design Suite user guide

www.celoxica.com Page 150

10.5.1 E

The system ining the program to
execute, a essor that understands 10
opcode he _asm_
preprocess ed to fill in the entries in
the progra

The proces

rom

• ning the instruction being executed

• ALU'

Opcode Description

t into x

x

Add a value from RAM to x

 Subtract a value from RAM from x

Unconditional jump to a ROM location

 a ROM location if x is not 0

Read a value into x

 x to user

ng these instructions, a ROM is built containing a program to generate the Fibonacci

ple 5

xample 5: microprocessor description

 described in this example consists of a ROM conta
 RAM containing some scratch variables and a proc

s. Each instruction is made up of a 4-bit opcode and a 4-bit operand. T
or macro is the assembler for this language and is us
m ROM declaration.

sor has three registers:

• a program counter, pc, that points to the next instruction to be fetched f
the ROM

an instruction register, ir, contai

an accumulator register, x, used as one input to the '

The instructions that the processor can execute are:

HALT Stop processing
LOAD Load a value from RAM into x

LOADI Load a constan

Store to RAM STORE

ADD

SUB

JUMP

JUMPNZ Jump to

INPUT

OUTPUT Wr ite

Usi
numbers.

The execution unit of the processor simply fetches instructions from the program ROM
and executes them using a switch statement.

10.5.2 Compiling and simulating exam

1. Double-click on the workspace file Example5.hw in the Examples\Handel-
C\Example5 directory.

2. Build the example in Debug mode by selecting Build>Build Example5.
3. Step into the program within the debugger by pressing F11.

DK Design Suite user guide

www.celoxica.com Page 151

10.6 Example 6: clock manager example

e 6 is in InstallDir\DK\Examples\Handel-
C\Exam e

The progra
external EDIF program.

The pro ra
to use the ck or a clock divided by 10 for the part of the project to be written in

 specification.

cription of program

w to instantiate primitives, and how to parameterize
ies specification.

ects to an external EDIF block which implements a clock

The workspace for Handel-C tutorial exampl
pl 6.

m creates a clock manager for a Handel-C program that interfaces to an

g m takes in a clock signal from an external program, and then selects whether
same clo

Handel-C.

The program demonstrates how to instantiate primitives and parameterize them using
the properties

This example cannot be simulated as the clock is fed from an instantiated primitive and
there is no clock statement in the Handel-C code. The example should be built for EDIF
output. This option is not available in Nexus PDK.

10.6.1 Example 6: des

Example 6 demonstrates ho
primitives using the propert

The Handel-C code conn
manager. It allows you select between two clocks for your Handel-C program.

DK Design Suite user guide

www.celoxica.com Page 152

The primitives are instantiated using Handel-C interface definitions.

CIRCUIT PRODUCED BY EXAMPLE 6 CODE

The main clock signal MainClkPadIn, is fed into the Clock Manager, ClockMan.

ram,

e IPAD (there is only one instance of the primitive in
ation sets the location property (LOC) and constrains

If you es
represented by the blocks starting (cell...

The ClkSelectBus signal determines whether the clock used by the Handel-C prog
MainClkMux, will be the same as the main clock (CLKO signal), or divided by 10 (CLKDV
signal).

Instantiating primitives

The primitives (IPAD, IBUFG, DCM, BUFG and BUFGMUX) are instantiated by the interface
definitions in Handel-C.

For example,

interface IPAD(unsigned 1 IPAD) MainClkPadIn() with {properties = {{"LOC",
"A13"}}};

instantiates a primitive called IPAD, with a 1-bit output port called IPAD.

MainClkPadIn is the instance of th
this case). The properties specific
it to pin A13.

build the example and examine the EDIF netlist, you can see the primitiv

DK Design Suite user guide

www.celoxica.com Page 153

For examp

(cell IPA
 (ce
 (vi
 (vi

)
)

10.6.2 C

del-

and click on the + sign to the left of the chip icon. Then double-click the file
CustomClock.hcc to open it in code editor window.

ild>Set Active Configuration, then
select EDIF and press OK.

Example6\EDIF.
: CustomClock.edf and CustomClock.hco.

e primitives are visible in the blocks starting (Cell...

This example can only be built for EDIF output. It cannot be simulated as there is no

le:

D
ype GENERIC) llT

ew view_1
ewType NETLIST)

(interface
(port IPAD (direction OUTPUT))

ompiling example 6

1. Double-click on the workspace file CustomClock.hw in the Examples\Han
C\Example6 directory.

2. To examine the code, check that you are in File View in the Workspace window

3. Change the build configuration to EDIF: select Bu

4. Compile and build it by selecting Build>Build CustomClock.
5. Browse to the build folder:

You should see the following files

6. To view the netlist, open CustomClock.edf in Notepad.

Th

clock statement in the Handel-C. EDIF output is not available from Nexus PDK.

DK Design Suite user guide

www.celoxica.com Page 154

11 Porting C to Handel-C

s in porting C to Handel-C

a number of stages in porting and mapping a conventional C program to
e. These are:

e target hardware platform.

el-C and use the simulator to
check correctness.

3. Modify code to take advantage of extra operators available in Handel-C.

dware interfaces and map the simulator channels onto
them.

Use the device place and route tools to generate the device image(s).

 of the stages may not be relevant to your design
ra stages if your design does not fit this example flow.

eciding how the software maps to the hardware

e device can be used to hold buffers used in
o include partitioning the algorithm

ventional C into multiple Handel-C
del-C and use the simulator to

ce at a time, leaving functions in C

rogram from C to Handel-C

optimizations that can be made to the algorithm given that
a Handel-C program can use parallelism. For example, you can sort numbers more

an
ime should be spent on this step.

 programs
may use shifts and masks. Simulate again to ensure program is still correct.

11.1 Stage

There are
hardwar

1. Decide how the software system maps onto th

2. Convert the conventional C program to Hand

4. Add fine grain parallelism.

5. Add the necessary har

6.

These steps are guidelines only. Some
or you may require ext

11.1.1 D

For example, external RAM connected to th
the conventional C program. This mapping may als

n multiple devices and, hence, splitting the conbetwee
programs. Convert the conventional C program to Han

iecheck correctness. You can convert the program a p
code and linking them into the Handel-C.

11.1.2 Converting the p

Remember that there may be

quickly in parallel by using a sorting network. This form of coarse grain parallelism c
provide massive performance gains so t

11.1.3 Using the extra operators available in Handel-C

For example, concatenation and bit selection can be used where conventional C

DK Design Suite user guide

www.celoxica.com Page 155

11.1.4 Adding fine grain parallelism

For example, make parallel assignments or execute individual instructions in parallel to
ain, simulate to ensure that the program still functions

interfaces

 the hardware interfaces necessary for the target architecture and map the simulator
f possible, simulate to ensure mapping

el-C\ExampleC directory. It
 detail the process of porting

C application. All but the final stage (targeting
e examples that may be simulated with the

jects within a single workspace. You
ions of the ported code.

the image data. The image data file

fine-tune performance. Ag
correctly.

11.1.5 Adding hardware

Add
channel communications onto these interfaces. I
has been performed correctly.

11.2 Porting C to Handel-C: Edge detector
example

The edge detector example is provided in the Examples\Hand
consists of a number of versions of the same application that
a conventional C application to a Handel-

nted as completreal hardware) are prese
Handel-C simulator. They are stored as separate pro
can execute this code, and simulate the different vers

The examples use specific hard-coded file names for
names must be exactly the same as those given in the examples, or the source code
must be edited and recompiled.

Program description

The edge detector program reads data from a raw data file into a buffer. The function
edge_detect then performs a simple edge detection and stores the results in a second
buffer which is stored in a second file.

The edge detection is performed by subtracting the pixel values for adjacent horizontal
and vertical pixels, taking the absolute values and thresholding the result. The source
and destination images are both 8-bit per pixel greyscale images.

11.2.1 The original program

The edge detector program gives a simple example of porting C code to Handel-C.

The original ANSI-C program is in InstallDir\DK\Examples\Handel-
C\ExampleC\Edge_C\edge.c.

To examine the file in DK:

DK Design Suite user guide

www.celoxica.com Page 156

1. Select File>Open.
2. Choose ANSI C/C++ in the Files of type box.

3. Browse to the location of the file.

4. Click Open.

C program Running the original

The conventional C source file and a compiled version are provided along with an
).

 to the
a Command Prompt window and

 data with the bmp2raw utility.
bmp source.raw 8bppdest.rgb

ntional C edge detector.
c\edge_c

 detector back to a BMP file using the

t utility to display the source

ss conversion to Handel-C

first step is to port the conventional C to Handel-C with as few changes as possible
dling sections of the
ata back to a file using

 first pass conversion is in edge_v1.hcc. The following points should be noted about

t buffers have been replaced with two RAMs.

pression has been used to replace the standard C function.

 and y variables have been given widths equal to the number of address
lines required for the RAMs to simplify the index of the RAM. Without this,

ld have to be padded with zeros in its MSBs to avoid a width
ssing the RAM.

s have been used for the three pixels read from RAM to
 on only one access per RAM per clock cycle. Without
condition for the if statement would require multiple

Source RAM.

example image (source.bmp

You can run the program now to see the results. This is d
mples\Handel-C\ExampleC\Data directory, opening

one by changing
Exa
typing the following commands:

1. Convert the example BMP file to raw
bmp2raw -b source.

2. Execute the conve
..\Edge_

3. Convert the output from the edge
raw2bmp utility:
raw2bmp -b 256 dest.raw dest_c.bmp 8bppsrc.rgb

e the standard Windows PainTo compare results, you can us
ination BMP files. and dest

11.2.2 Stage 1: First pa

The
to ensure that the resulting program works correctly. The file han

ad data from a file and write doriginal program are modified to re
the Handel-C simulator.

The
the port:

1. The Source and Des

2. An abs() macro ex

3. The x

each variable wou
conflict when acce

4. Temporary variable
ionavoid the restrict

these variables, the
accesses to the

DK Design Suite user guide

www.celoxica.com Page 157

5. The pixel values must be extended by one bit to en
underflow.

sure the subtract does not

6. The () and () simulator channels are used to

s used to read
le into the Handel-C simulator. chanout is used

Runn

To execute

1. Convert the example BMP file to text data with the bmp2raw utility by opening

bmp2raw source.bmp source.dat 8bppdest.rgb

irst version of the Handel-C code in Debug mode by selecting
Build>Build_Edge_v1. If Edge_v1 is not the active project, set this by selecting

raw2bmp g to
the Data directory and typing:

Data files are read from and written to the \Data directory, since this is set as the

chanin Input chanout Output
transfer data in and out of the Handel-C simulator. They replace the fread
and fwrite file operations in the original C source. chanin i
data from the source image fi
to write data from the Handel-C simulator to the destination image file.
The file name is given using the with specification, e.g.
chanin unsigned Input with {infile = "..\Data\source.dat"};

ing the first attempt Handel-C code

 the Handel-C code:

a Command prompt or MS-DOS window, changing to the Examples\Handel-
C\ExampleC directory and typing:

2. Open the DK edge detector workspace (Examples\Handel-
C\ExampleC\ExampleC.hw) by double-clicking on it.

3. Build the f

Project>Set Active Project>Edge_v1.
4. Run the project by selecting Build>Start Debug>Go or pressing F5

5. Convert the output from the edge detector back to a BMP file using the
 utility by opening a Command prompt or MSDOS window, changin

raw2bmp 256 dest.dat dest_v1.bmp 8bppsrc.rgb

working directory on the Debugger tab in the Project Settings dialog.

11.2.3 Stage 2: First optimizations of the Handel-C program

second stage in developing the edge detector program is to change some of the
operators familiar in C to operators more suitable for Handel-C.

 code, every time the Source or Dest RAM is accessed, a multiplication is
ndel-C optimizer simplifies this to a shift left by 8

and to reflect the hardware more accurately and
uce compilation times. We can also introduce new macros to access the RAMs given x

The

In the stage 1
made by the constant WIDTH. The Ha

s but we could easily do this by hbit
red
and y coordinates:

DK Design Suite user guide

www.celoxica.com Page 158

macro expr ReadRAM(a, b) =
 ((unsigned 1)0) @
 Source[(0@a) + ((0@b) << 8)];

Notice how the macros pad both the result and the coordinate expressions with zeros.
s allows us to reduce the width of the x and y counters to 8 bits each and reduces

clutter in the rest of the program. This width reduction does mean that the loop
d the

constant 256. Instead, we test against zero since the counters will wrap round to zero

Running the code version 2

ple Handel-C code:

ta

selecting Project>Set Active Project>Edge_v2:
ecting Build>Build Edge_v2 followed by F5.

ctor back to a BMP file using the
o

Data fi e this is set as the

macro proc WriteRAM(a, b, c)
 Dest[(0@a) + ((0@b)<<8)] = c;

Thi

conditions must be altered because x and y are no longer wide enough to hol

after 255.

To execute this version of the edge detector exam

1. If you have not done so, convert the example BMP file to text data.

Open a Command prompt or MS-DOS window, change to the ExampleC\Da
directory and type
bmp2raw source.bmp source.dat 8bppdest.rgb

2. Open the DK edge detector workspace (Examples\Handel-
C\ExampleC\ExampleC.hw) by double-clicking on it.

3. Make the version 2 project current within the ExampleC workspace by

4. Build and run the project by sel

5. Convert the output from the edge dete
raw2bmp utility by opening a Command Prompt or MS-DOS window. Change t
the Data directory and type:
raw2bmp 256 dest.dat dest_v2.bmp 8bppsrc.rgb

les are read from and written to the \Data directory, sinc
working directory on the Debugger tab in the Project Settings dialog.

11.2.4 Stage 3: Adding fine grain parallelism

1. Replace for loops with while loops

To execute this version of the code:

1. If you have not done so, convert the example BMP file to text data.

To improve performance in the edge detector program we can make two modifications:

2. Add multiple parallel accesses to external RAMs in single clock cycles

The version 3 edge detector project contains the Handel-C code with these modifications.

DK Design Suite user guide

www.celoxica.com Page 159

Open a Command prompt or MS-DOS window, change to the ExampleC\Data
directory and type

bmp2raw source.bmp source.dat 8bppdest.rgb

del-
C\ExampleC\ExampleC.hw) by double-clicking on it.

4. Build and run the project by selecting Build>Build Edge_v3 followed by F5.

 edge detector back to a BMP file using the
e to

files are read from and written to the \Data directory, since this is set as the

2. Open the DK edge detector workspace (Examples\Han

3. Make the version 3 project current within the ExampleC workspace by
selecting Project>Set Active Project>Edge_v3

5. Convert the output from the
raw2bmp utility by opening a Command Prompt or MS-DOS window. Chang
the Data directory and type:
raw2bmp 256 dest.dat dest_v3.bmp 8bppsrc.rgb

Data
working directory on the Debug tab in the Project Settings dialog.

for while loop inside the compiler in the following way:

for (Init
 Body;

becomes:

{
 In
 while (
 {
 B

Inc

}

This is nor rdware implementation because the Inc statement is
execut s n
parallel. Th and use the par statement to

An area in which the edge detector program's performance can be improved concerns the
ut the

be

Replacing for loops with while loops

The loop expands into a

; Test; Inc)

it;
Test)

ody;
 ;
 }

mally not efficient for ha
ed equentially after the loop body when in most cases it could be executed i

e solution is to expand the for loops by hand
execute the increment in parallel with one of the statements in the loop body.

Multiple parallel access to external RAM

three statements required to read the three pixels from external RAM. Witho
restriction on multiple accesses to RAMs the loop body of the edge detector could
executed in a single cycle whereas the current program requires four cycles, three of
which access the RAM. As many of these RAM accesses need to be eliminated as
possible.

DK Design Suite user guide

www.celoxica.com Page 160

Since it is not possible to access the external RAM more than once in one clock cycle, the
 in parallel. Version 2 accesses most

s 34 and is 56:

5), (33,56) and (34,56).

s also read when x is 34 and y is 55, and when x is 35 and y
is 55.

The second pixel is also read when x is 33 and y is 56, and when x is 33 and

d in two extra RAMs when they are read from the main external
 then you could access these additional RAMs to get pixel values in

 the previous line of the image in an internal RAM on the device.
rrent location to be read at the same time as the

ernal RAM is accessed. The second step is to store the pixel to the left of the current
ion in a register. The loop body then looks something like this:

LineAbove[x] = Pixel1;

 can
k like this:

 Pixel1 = (int)ReadRAM(x, y);

 Pixel3 = (int)LineAbove[x];
}

par
{
 Li
 Pixel
}

Note the L
line of the variable must be initialized at the start of each line
with the le

only way to improve this is to access multiple RAMs
locations in the external RAM three times.

For example, when x i y

ls read are at coordinates (34,5• The three pixe

• The first pixel i

•
y is 57.

If the pixels are store
M for the first timeRA

the main loop.

The first step is to store
This allows the pixel above the cu
ext
locat

Pixel1 = ReadRAM(x, y);
Pixel2 = PixelLeft;
Pixel3 = LineAbove[x];

PixelLeft = Pixel1;

At first glance, it looks worse, as the number of clock cycles has increased, but you
now add parallelism to make it loo

par
{

 Pixel2 = PixelLeft;

neAbove[x] = Pixel1;
Left = Pixel1;

ineAbove RAM must be initialized at the start of the image to contain the first
image and the PixelLeft
ft hand pixel on that line.

DK Design Suite user guide

www.celoxica.com Page 161

Since the second of these par statements and the if statement are not dependent on
each other

Putting
edge_v3.h the
end of the e start and end values have been adjusted
accordingl ent to be executed without additional clock cycles,
which wou loop.

her fine grain parallelism

he loop
increment) to 2 clock cycles. Can we do any better? The answer is yes because we

el
 the loop body could be executed simultaneously if we could organize the

We have to modify the program again because the internal RAM is accessed in
both cl k
involve tw n a single clock cycle.

The solu io
into one in
internal RA
declaring t
[WIDTH]) whereas in

 there would be no practical difference.

two
statements in the loop body can be rolled into one. We use the LSB of the y coordinate to
determ from and which line buffer to write to. The external
RAM read
the RAM in

In the
and is exe or the
initializ are required
to initia
initializ
exactly on etting the image into or the
results out
we conclud

Running

To execute

1.

 they can be executed in parallel.

 all these modifications together gives an edge_detect procedure. Examine
cc in DK or Notepad. Notice that the increment of y has been moved from
 loop to the start, and th
y. This allows the increm
ld be required if it were placed at the end of the

11.2.5 Stage 4: Furt

We have now reduced the core loop body from five clock cycles (including t

should be able to access the two off-chip banks of RAM in parallel. Thus, the two parall
statements in
data flow correctly.

LineAbove
oc cycles. Parallelizing the two statements is not permitted because it would

o accesses to the same internal RAM i

t n is to increase the number of internal RAMs. The current line can be copied
ternal RAM while the previous line is read from a second internal RAM. The two
M banks can then be swapped for the next line. Note that with Handel-C
wo banks with 256 elements each (ram unsigned char LineAbove[2]
is much more efficient than 256 banks with two elements each,

conventional C

By also removing the Pixel1, Pixel2 and Pixel3 intermediate variables, the

ine which line buffer to read
is done using a shared expression (RAMPixel) since we need the value from
 multiple places but only want to perform the actual read once.

new version of the edge detector the core loop is now only one clock cycle long
cuted 255 times per line. One extra clock cycle is required per line f

ation of variables and 255 lines are processed. In addition, 255 cycles
ock cycle per fr e is requiredlize the on-chip RAM and one extra cl am for variable

ation. This gives a grand total of 65536 clock cycles per frame or an average of
e pixel per clock cycle. Since there is no way of g
 from the device any faster than this without changing the hardware interface,
e that we have reached the fastest possible solution to our problem.

 the code version 4

 version 4 of the edge detector example Handel-C code:

If you have not done so, convert the example BMP file to text data.

DK Design Suite user guide

www.celoxica.com Page 162

Open a Command prompt or MS-DOS window, change to the ExampleC\Data
directory and type
bmp2raw source.bmp source.dat 8bppdest.rgb

Open the DK edge dete2. ctor workspace (Examples\Handel-

3. eC workspace by

4. Build and run the project by selecting Build>Build Edge_v4 followed by F5.

edge detector back to a BMP file using the
tility by opening a Command Prompt or MS-DOS window. Change to

 type:
raw2bm 256 dest.dat dest_v4.bmp 8bppsrc.rgb

e \Data directory, since this is set as the

C\ExampleC\ExampleC.hw) by double-clicking on it.

Make the version 4 project current within the Exampl
selecting Project>Set Active Project>Edge_v4.

5. Convert the output from the
raw2bmp u
the Data directory and

p

Data files are read from and written to th
working directory on the Debugger tab in the Project Settings dialog.

11.2.6 Stage 5: Adding hardware interfaces

Once the edge detector program has been simulated correctly you must add the

 rocedures.

 synchronize the frame grabber.

3. he project settings for EDIF, Verilog or VHDL.

There must be two new macro procedures - one to read a word from the host and one to

 modified code looks like this:

necessary hardware interfaces.

1. Add read and write p

2. Declare external pins and

Change t

Adding macro procedures

write a word to the host. These could also be implemented as functions.

The suitably

DK Design Suite user guide

www.celoxica.com Page 163

// Rea
cro proc ReadWord(Reg)

 wh e
 delay;
 Re
 par
 {
 Reg = dataB.in; // Read the bus

}

back to host

 {

 En = 1; // Drive the bus

 Write = 0; // Clear the write strobe

}

Pins and frame grabber

declarations we

 code to synchronize the

To com VHDL or Verilog output, you need to
change the Build>Set Active Configuration). You
cannot com

The code i the appropriate
pins for the device you are efinitions given are examples only and do
not reflect the actual pins available on any particular device.

d word from host
ma
{

il (ReadReady == 0)

ad = 1; // Set the read strobe

 Read = 0; // Clear the read strobe
 }

// Write one word
macro proc WriteWord(Expr)
{
 par

 while (WriteReady == 0)
 delay;
 dataBOut = Expr;
 }
 par
 {

 Write = 1; // Set the write strobe
 }

 En = 0; // Stop driving the bus

We need to define the pins for the external RAMs and remove the RAM
added to simulate the RAMs.

The main program also needs to be modified to include the
frame grabber with the edge detector.

Compiling for hardware

pile the edge detector program for EDIF,
 build configuration settings in the DK GUI (

ware if you are using Nexus PDpile for hard K.

s not designed for a specific device. You would need to know
 targeting. The pin d

DK Design Suite user guide

www.celoxica.com Page 164

The co

#define LOG2_WIDTH 8
#defin

set clock
unsign

// Ext
ram unsig

 data = {"P1", "P2", "P3", "P4","P5", "P6", "P7", "P8"},

 "P13", "P14", "P15", "P16",

 "P21", "P22", "P23", "P24"},
 we = {"P25"}, oe = {"P26"}, cs = {"P27"}};

ram unsig
 o
 data = {"P28", "P29", "P30", "P31",

 addr = {"P36", "P37", "P38", "P39",

 "P48", "P49", "P50", "P51"},
 w

de excluding the edge detection and host interface macros is given below.

e WIDTH 256
#define LOG2_HEIGHT 8
#define HEIGHT 256

 = external "P1";
ed 8 Threshold;

ernal RAM definitions/declarations
ned 8 Source[65536] with {

 offchip = 1,

 addr = {"P9", "P10", "P11", "P12",

 "P17", "P18", "P19", "P20",

ned 8 Dest[65536] with {
ffchip = 1,

 "P32", "P33", "P34", "P35"},

 "P40", "P41", "P41", "P43",
 "P44", "P45", "P46", "P47",

e = {"P52"}, oe = {"P53"}, cs = {"54"}};

DK Design Suite user guide

www.celoxica.com Page 165

macro expr ReadRAM(a, b) =
 ((unsigned 1)0) @ Source[(0@a) + ((0@b) << 8)];
macro proc WriteRAM(a, b, c) Dest[(0@a) + ((0@b)<<8)] = c;

#ifndef SIMULATE
// Host bus definitions/declarations
unsigned 8 dataBOut;

int 1 En = 0;
interface bus_ts_clock_in(int 4) dataB(dataBOut, En==1) with
 {data = {"P55", "P56", "P57", "P58"}};

int 1 Write = 0;
interface bus_out() writeB(Write) with
 {data = {"P59"}};

int 1 Read = 0;
interface bus_out() readB(Read) with
 {data = {"P60"}};

interface bus_clock_in(int 1) WriteReady() with
 {data = {"P61"}};

interface bus_clock_in(int 1) ReadReady() with
 {data = {"P62"}};
#endif

/*
* Insert edge_detect, ReadWord and WriteWord function
* and macro definitions here
*/

void main(void)
{
 ReadWord(Threshold);

 while(1)
 {
 unsigned Dummy;

 ReadWord(Dummy);
 edge_detect();
 WriteWord(Dummy);
 }
}

DK Design Suite user guide

www.celoxica.com Page 166

12 Integrating C/C++ files
tegrate C or C++ files in a Handel-C proYou can in ject built for Debug or Release:

t-

ant to build an .exe
.dll mand line to specify

s, a

t to declare an individual function

• by #including a specific C/C++ header file.

extern C
{
 in p
}

R

extern "C"
{
 #include "myheaderfile.h"
}

You can only link to C/C++ code if you are building for Debug or Release.

I ires a user action before the program continues, your DK
simulation may appear to hang. For example, if you make a call to getchar(), you need

1. Add the C/C++ files to your project (use Project>Add>Files).
2. Specify the file language

If you are adding a file with a non-standard extension, you may need to righ
click the file to specify its type in File properties.

3. Edit your Handel-C files to call the C/C++ functions if required.

4. Set up custom build steps to compile the C/C++ files.

5. Link the C/C++ files and libraries into your Handel-C project.

6. Build and simulate your project.

You cannot debug C/C++ code in DK, or set breakpoint in it. If you w
file instead of a simulator file, change the Simulator compilation com
this.

If you step into a C/C++ simulation in DK and use the Break or Stop Debugging command
dialog will appear after a few seconds saying: 'Simulator is not responding. Terminate simulation
process?'. Select Yes.

12.1 Calling C/C++ functions from Handel-C

You can call C/C++ library functions from Handel-C code in code built for Debug or
Release:

• by using the extern "language" construc

For example:

 " "

t rintf(const char *format, ...);

O

f you call a function that requ

DK Design Suite user guide

www.celoxica.com Page 167

to press Enter in the DOS program before it will continue executing. Once you have don
this, you can continue using DK GUI commands.

e

If you want to call functions from the C/C++ standard libraries (e.g. stdlib, stdio), you
may need r function prototypes rather than #including the relevant header to copy thei
files fo ur s ccessful compilation.

 you are integrating a C or C++ file into a Handel-C project, you need to specify custom

Specifying the custom build commands

2. Set the Description to display appropriate text (e.g., Compiling C++ file...)

s around strings if they have
spaces in them.

y any files that need to be built before the current file in the Dependencies.

iles used by the C/C++ file to the
 entries by commas.

g the OK button.

/C++ files

on the
Build commands tab in Project Settings.

Example commands for building a C/C++ object file to be linked into a

Visual C++ example: cl -c "$(InputPath)" -Fo MyProject.obj

12.2 Compiling and linking in a C/C++ file

If
build commands and link in the file and any libraries it uses.

1. Select the file in the Workspace window and then select Project>Settings>Build
commands.

3. Set the Commands to compile the file. Use quote

4. Set the Outputs to be the output file name (e.g. MyProject.obj).

5. Specif

Linking the C/C++file and library

1. Select the project containing the file.

2. Select the Linker tab on the Project Settings dialog. Add the output file name
(e.g. MyProject.obj) to the Additional C/C++ Modules box.

3. Add the names and paths of any library f
Additional C/C++ Modules box. Separate

4. Save the Project settings by pressin

12.2.1 Build commands to compile C

If you are using C or C++ files in a DK project, you need to specify custom build
commands to compile them for simulation. Custom build commands are specified

simulation .dll

DK Design Suite user guide

www.celoxica.com Page 168

GCC example
were building

: g+
 a C

MyProject.obj)

en s

rings need to have quotes around them if they contain spaces. The file and

+ -O2 -c "$(InputPath)" -o MyProject.obj (for a C++ file; if you
 file the command would be gcc -O2 -c $(InputPath)" -o

.

You would th

ile path st

pecify MyProject.obj as the output file name.

F
directory macros must also be quoted if the string they represent contains spaces.

Using the Wide Number library

If you are using the Wide Number library, you need to have DK\Sim\Include o
Include path, usi

n the
ng the -I command. For example:

nclude" Fred.cpp -Fo Fred.obj

ing Handel-C functions from C/C++

 the C/C++ code must reside in a different file to the Handel-C code.

ables.

2. Run a build command in your C/C++ compiler to link in the .obj file when you

• Visual C++: C++FileName.cpp

C code use CFileName.c instead of
 use gcc instead of g++.

: example

on in your

cl -c -I"C:\Program Files\Celoxica\DK\Sim\I

12.3 Call

You can call Handel-C functions from C or C++ code using the extern "language"
construct. To do so:

•

• the widths of parameters must match. If necessary, use the wide number
library to provide type definitions for wide Handel-C vari

• you must specify a clock in any Handel-C source files containing functions that
are called by the C/C++ code.

1. Build the Handel-C file as an .obj file in DK.

compile your C/C++ project

C/C++ compiler build commands

cl -O2 -I"InstallDir\DK\Sim\Include"
HandelCFileName.obj

• GCC: g++ -w -O2 -I"InstallDir\DK\Sim\Include" C++FileName.cpp
HandelCFileName.obj -oC++FileName.exe

These commands are for C++ code, for
C++FileName.cpp, and for GCC,

12.3.1 Calling Handel-C functions from C/C++

This example shows how to use the extern construct to use a Handel-C functi
C++ code.

DK Design Suite user guide

www.celoxica.com Page 169

Handel-C:

extern C
{
 int 6
 result = (int 16)(0 @ a) + (int 16)(0 @ b);
 return(result);
}

C++:

extern short wideSum(char a, char b);

void m n
{
 char x = 10,y = 5;

Handel-C functions from C++: tutorial

o use Handel-C functions in your C++ code. The
 in \DK\Examples\extern_C\Handel-C in C++.

col. The HDLC (High level Data Link Control)
at operates at the data link layer (layer 2) of the

frames which end with a 16-bit Cyclic

ritten in C++ (hdlc.cpp). This code calls a CRC function written in
ndel-C (crc.hcc). HDLCTest.txt contains data to test the HDLC model.

2. Select Project>Settings, and open the Linker tab.

nge the default Simulator compilation command line to compile an .obj

4. Check that the project is in Debug mode and then build it (Build>Build crc).
This should create a file called crc.obj in the Project directory.

5. Open a command prompt and browse to the directory containing the example
files. Use one of the following commands, depending on which C++ compiler
you are using:
Visual C++: cl -O2 -I"InstallDir\DK\Sim\Include" hdlc.cpp crc.obj
GCC: g++ -w -O2 -I"InstallDir\DK\Sim\Include" hdlc.cpp crc.obj -

 " ++" short wideSum(char a, char b)

 1 result;

ai (void)

 short result;
 result = wideSum(x,y);
}

12.3.2 Calling

This example demonstrates how t
example files are InstallDir

The example code creates an HDLC proto
col thprotocol is a general-purpose proto

OSI reference model. Data is packaged into
Redundancy Check (CRC) value.

The HDLC code is w
Ha

Running the example

1. Open CRC.hw in DK

3. Cha
file.

DK Design Suite user guide

www.celoxica.com Page 170

ohdlc.exe
his should create a fT ile called hdlc.exe in the Project directory.

e file to run it. It should use the data in the
ay notification of the data transmitted:

ctestbench.c file): contains functions for filling a buffer with data
and for checking that data is sorted.

s in ctestbench.c using the
extern "C" construct, and the standard C library function printf. This file

ies

ction to check the data.

 and simulating the bitonic sort example

llDir\DK\Examples\extern_C\bitonic_sort\CTestBench.hw) by
le-clicking on it. DK starts with the CTestBench workspace open.

you are in File View in the Workspace window and click on the + sign
see what files are within the project.

amine the code, double-click ctestbench.c or mainhc.hcc.

u are using GCC (GNU) as your backend compiler, you will need to alter
the custom build commands for ctestbench.c:
Open Project Settings (Project>Settings)
Click on the + next to the CTestBench project in the left hand pane to display
the project files, and select ctestbench.c.
Select the Build commands tab.
Change the line shown in the Commands window to:
gcc -c "$(InputPath)" -o "$(TargetDir)\ctestbench.obj"
Select Outputs in the View box. Ensure that the Outputs box shows the correct
location of the output file (e.g. $(TargetDir)\CTestBench.obj). Do not put
the output file location in quotes.

6. Double-click the icon of the .ex
test file, HDLCTest.txt, and displ

Data received: 0x03

Data received: 0x07

...

Data received: 0x0e

12.4 Using extern C: bitonic sort example

This program runs a bitonic sort algorithm (a sort algorithm designed for parallel
processing).

It consists of two files:

• (ANSI-C

• mainhc.hcc (Handel-C file): declares the function

contains the sorting algorithm. It calls the C function to load the data, appl
the bitonic sort algorithm (using the printf function to display debug
information) and then calls the C fun

12.4.1 Compiling

1. Open
(ta

the workspace file
Ins

doub

2. Check that
to the left of the chip icon to

3. To ex

4. If yo

DK Design Suite user guide

www.celoxica.com Page 171

The output file and location must also be specified in the Additional C\C++ Modules
 on the Linker tab in Project Settings.

 the example in Debug mode by selecting Build CTestBench from the Build

6. Start the debugger by pressing F5. Alternatively, press F11 to step through
e end (Ctrl+F11).

d you should see a command window with the following messages:

rnal C routine...

a correct!

ting C++ to Handel-C: HDLC example

ndancy Check (CRC) value.

m an input file, HDLCTest.txt, packs it into
 a CRC function. When you simulate the
mand window.

 program from software to hardware, where
lculates the CRC value is moved from C++ to

m entirely in C++ (using a C++ compiler), or
ome of the C++ functions in Handel-C, and build and simulate the program using

ample

tern_C\HDLC\HDLC.hw) by double-
kspace open.

hat you are in file view and click on the + sign to the left of the chip
see what files are within the project.

field

5. Build
menu, or pressing F7.

the simulation, and advance to th

If you run to the en

Getting data from exte

Sorting data...
Checking data...
Dat

Stop the debugger by pressing Shift F5.

12.5 Por

The High-level Data Link Control (HDLC) protocol is a general-purpose protocol that
operates at the data link layer (layer 2) of the OSI reference model. Data is packaged
into frames which end with a 16-bit Cyclic Redu

The program consist of two files:

• hdlc.cpp (C++file)

• CRC.hch (Handel-C file)

The program takes data as a bitstream fro
frames, and performs error checking using
program, the results are displayed in a com

It demonstrates a stage in porting a HDLC
the main function and the function that ca
Handel-C.

You can compile and simulate the progra
link to s
DK.

12.5.1 Description of the HDLC ex

To examine the code:

1. Open the workspace file (DK\Examples\ex
clicking on it. DK starts with the HDLC wor

2. Check t
icon to

DK Design Suite user guide

www.celoxica.com Page 172

3. To examine the code, double-click hdlc.cpp or CRC.hcc.

tion

nerates the CRC value

• ts into a frame, and calls the CRC checking

Both files
out, for ex

//#define SOFTWARE
#define H

If the #def
CRC.hcc w
function an main hdlc.cpp be used.

 HARDWARE remains (#define SOFTWARE is commented out), the main

es the external C++ function receiver, and makes the CRCGen
function available to C linkage using the extern "C++" construct. The C++ file declares

The program runs in Handel-C, calls in C++, which then calls in

In orde o

The program consists of four functions

• main: calls the receiver func

• GetBit opens a file and reads a bit from it

• CRCGen: ge

Receiver calls GetBit, packs the bi
function

contain two #define statements at the start. One of these will be commented
ample:

ARDWARE

ine SOFTWARE remains (#define HARDWARE is commented out), the code in
ill not be built due to the #ifdef HARDWARE statements and the CRCGen
d the function in will

If the #define
function runs in Handel-C and the program can be simulated using DK. The CRCGen
function is also shifted to Handel-C.

The Handel-C file declar

the extern function CRCGen.

main receiver CRCGen
Handel-C.

r t use the DK debugger, main() must be in the Handel-C program.

12.5.2 C

You can co
compile pa oftware using DK.

To build the program for software only:

ompiling and simulating the HDLC example

mpile the HDLC example entirely for software, using a C++ compiler, or
rt for hardware and part for s

Compiling and simulating for software (entirely in C++)

1. Open hdlc.cpp. The file is located in
InstallDir\DK\Examples\extern_C\HDLC.

2. Comment out the #define HARDWARE statement at the top of the file (and
make sure that #define SOFTWARE is not commented out).

DK Design Suite user guide

www.celoxica.com Page 173

3. In your C++ compiler, set paths to the DK simulation library and include
files:InstallDir\DK\Sim\Lib and InstallDir\DK\Sim\Include.

ile in DK

 it.

TWARE statement at the top of the file (and
E is not commented out).

4. Open hdlc.cpp and comment out the #define SOFTWARE statement (and

ettings (Project>Settings)
Click on the + next to the HDLC project in the left hand pane to display the

Edit the path shown to the DK\Sim\Include directory in the Commands window,

e

+
$(
le

loca
outp

e odules
Linker tab in Project Settings.

6. Build the project in Debug mode, by selecting Build Hdlc from the Build menu, or

Alternatively, press F11 to step through

4. Build and simulate the file using your C++ compiler.

Porting to hardware (split between C++ and Handel-C)

1. Open the HDLC workspace f
(InstallDir\DK\Examples\extern_C\Hdlc\HDLC.hw) by double-clicking on it.

2. Open crc.hcc in the code editor window by double-clicking one

3. Comment out the #define SOF
make sure that #define HARDWAR

make sure #define HARDWARE is not commented out).

5. Check the custom build commands for hdlc.cpp:
Open Project S

project files, and select hdlc.cpp.
Select the Build commands tab.

if necessary.
If you use GCC (GNU) as your backend compiler, change the line shown in th
Commands window:
g+
o"
Se

-I "..\..\..\Sim\Include" -c hdlc.cpp -
TargetDir)\hdlc.obj"
ct Outputs in the View box. Ensure that the Outputs box shows the correct
tion of the output file (e.g. $(TargetDir)\hdlc.obj). Do not put the
ut file location in quotes.

Th
field on the

output file and location must also be specified in the Additional C\C++ M

pressing F7.

7. Start the debugger by pressing F5.
the simulation, and advance to the end (Ctrl+F11). To end the simulation,
press the Stop Debugging button or select Debug>Stop Debugging. Af
se

ter a few
conds a dialog will appear asking if you want to close the simulation.

ation of data transmitted:

ceived: 0x0e

Results

You should get the same results for both versions of the program. A command window
will display notific

Data received: 0x03
Data received: 0x07
...
Data re

DK Design Suite user guide

www.celoxica.com Page 174

If you v
window wi hardware (using
the DK a e
the DK de

ha e built the program for software (using the C++ compiler), the command
ll be produced by hdlc.exe. If you have built the program for

 H ndel-C compiler) the command window will be produced by hdlc.dll insid
bugger.

DK Design Suite user guide

www.celoxica.com Page 175

13 Integrating Handel-C with VHDL,
d EDIF
Handel-C with external VHDL, Verilog or EDIF blocks:

F component from within a Handel-C project

within a VHDL, Verilog or EDIF project

 communicate with the HDL/EDIF, but the
ferent in these two cases.

e top level, it identifies the HDL/EDIF component it must connect to
using the component's HDL/EDIF name as the Handel-C interface Sort. (For VHDL, if

y the Handel-C are of a different type to those used in VHDL, you

andel-C needs to use the port_in and
ic. You must then

e a VHDL, EDIF or Verilog wrapper file to create the wires between the Handel-C
L/EDIF. Sample wrapper files are provided with the examples in the

nd EDIF directories within InstallDir\DK\Examples.

Verilog you can use the Co-
ica's Platform Developer's Kit.

nfiguration

 is a component that defines the reset behaviour on the
 need to link to a ROC file when you want to

erilog produced from DK using a simulator such as

ze Handel-C to VHDL or Verilog to target Xilinx devices,
unless you have specified a global reset (set reset).

Verilog an
There are two ways of interfacing

• Calling a VHDL, Verilog or EDI

• Calling a Handel-C component from

The Handel-C uses an interface construct
way you write the connections is slightly dif

 to

If the Handel-C is th
by
the ports generated b
will need a wrapper file to connect the two types of ports together.)

If the VHDL, Verilog or EDIF is the top level, the H
rt_out interface sorts to provide connections to the external logpo

writ
ports and the HD
VHDL, Verilog a

Co-simulating Handel-C with Verilog and VHDL

If you want to co-simulate Handel-C code with VHDL or
provided in Celoxsimulation Bridge for ModelSim. This is

13.1 Reset on co

Reset on configuration (ROC)
configuration of the FPGA. You

• simulate VHDL or V
ModelSim

• compile or synthesi

RESET ON CONFIGURATION DIAGRAM

DK Design Suite user guide

www.celoxica.com Page 176

You need to compile the appropriate VHDL (*.vhd) or Verilog (*.v) file into your work
library. Two different versions of the ROC files are supplied:

vhd or xilroc.v - Xilinx ROC. These instantiate the standard Xilinx
ponent. If you wish for different behaviour, you will need to replace

the file. Refer to Xilinx documentation on the ROC component.

t need a ROC file; flip-flops are
et to zero after configuration.

ting with VHDL blocks

DL you can use the Co-simulation Bridge for
ided as part of the Platform Developer's Kit.

vides functions needed by all Handel-C

e HandelC.vhd file into a library called
delC in Precision, LeonardoSpectrum or Synplify.

ntation for your synthesis or simulation tool on compiling library files.

ilinx device or want to simulate your VHDL code in ModelSim, you
u only need to do

• For simulation, use simroc.vhd

flip-flops are
et to zero after configuration.

Using Handel-C as the top level

In a top-level Handel-C program communicating with a VHDL entity you will need:

• simroc.vhd or simroc.v - Simulation ROC. Use these when simulating VHDL
or Verilog.

• xilroc.
ROC com

If you are targeting Altera or Actel devices, you do no
automatically res

13.2 Integra

If you want to co-simulate Handel-C with VH
ModelSim, prov

13.2.1 Linking to the Handel-C VHDL library

Celoxica supplies the HandelC.vhd file which pro
DL files. VH

To use Handel-C VHDL, you must compile th
Han

Consult the docume

If you are targeting a X
need to compile one of the supplied ROC files into your work library. Yo
this if the global reset (set reset) is not specified.

• For Xilinx devices, use xilroc.vhd

You do not need to use a ROC file to target Altera or Actel devices as
automatically res

13.2.2 Writing Handel-C code to integrate with VHDL code

DK Design Suite user guide

www.celoxica.com Page 177

An interface Prototypes the interface sort. The interfa
declaration: name as the VHDL entity. If you have only one instance of the entity in

 may

ce sort must have the same

ill be transmitted.

level

municating with a top-level VHDL entity, you only need a
ce for each port going into or out of the Handel-C

rface declaration

terface declaration in the Handel-C code prototypes the interface sort, and is
of the format:

L_from_HC_port {, VHDL_from_HC_port}); //output ports

 the name of the HDL component. The same name must
the interface sort in the interface definition.

DL_to_HC_port is the type and name of a port bringing data to the Handel-
C code (output from VHDL) as specified in the VHDL entity.

from the
Handel-C code (input to VHDL) as specified in the VHDL entity.

. In

your code, and you are not referring forward to a definition, you
incorporate the declaration into the definition.

ames the instance and defines the data that wAn interface N
definition:

Using VHDL as the top

In a Handel-C program com
port_in or port_out interfa
component.

del-C to VHDL: inteHan

The VHDL in

interface VHDL_entity_sort
 (VHDL_to_HC_port {,VHDL_to_HC_port }) //input ports

 (VHD

where:

• VHDL_entity_sort is
be used as

• VH

• VHDL_from_HC_port is the type and name of a port sending data

Note that ports are seen from the VHDL side, so port names may be confusing
Handel-C, the ports that input data TO the Handel-C must be specified first.

Handel-C n

The VHDL
sort protot f the interface and port
instanc the data that will be transmitted.

The definit

interface

 {, rtSpec]})
 interface_Name
 (VHDL_from_HC_port = from_HC_data [with portSpec]
 {, VHDL_from_HC_port = from_HC_data [with portSpec]});

 to VHDL: interface definitio

interface definition in the Handel-C code creates an instance of the interface
yped in the declaration. It also gives the names o

es and defines

ion is of the format:

 VHDL_entity_sort
 (VHDL_to_HC_port [with portSpec]

VHDL_to_HC_port [with po

DK Design Suite user guide

www.celoxica.com Page 178

where:

• VHDL_entity_sort is the interface sort that you previously declared.

• VHDL_to_HC_port is the type and name of a port bringing data to the Handel-
C code (output from VHDL). This will have the same type as defined in the
interface declaration.

• interface_Name is the name for this instance of the interface.

• VHDL_from_HC_port is the type and name of a port sending data from the
ed in the

.

13.2.3 E

The examp interface Handel-C and VHDL components,
when Handel-C

set clock = external "D17";

 (unsigned 4 return_val)
 vhdl_component_instance

 unsigned 4 sent_value = x) with {busformat = "B_I"};

{
 unsig
 y = vhdl_component_instance.return_val; // Read from VHDL component

x = y; // Write to VHDL component

}

VHDL co

The VHDL entity will need an interface like this to be compatible with the Handel-C:

Handel-C code (input to VHDL). This will have the same type as defin
interface declaration.

• from_HC_data is an expression that is output from the Handel-C to the VHDL

• with portSpec is an optional port specification.

xample: VHDL within a Handel-C project

le below demonstrates how to
 is the top level of your design.

Handel-C code

unsigned 4 x;
interface vhdl_component

 (unsigned 1 clk = __clock,

void main(void)

ned 4 y;

de

DK Design Suite user guide

www.celoxica.com Page 179

entity vhdl_component is
 port (
 clk : in std_logic;
 sent_value_0 : in std_logic;
 sent_value_1 : in std_logic;
 sent_value_2 : in std_logic;

 return_val_0 : out std_logic;

a

end;

Note that all the
generated using the "B_I" busformat. Using a different busformat specification will give

o 4-bit ports and one 1-bit port, but you need to ensure that the format matches the
output from your synthesis tool.

trates how to interface Handel-C and VHDL components,
ts top

d 4 x;

interf e
 (
 Cl k
 (

interf e
 (
 InPort

 sent_value_3 : in std_logic;

 return_val_1 : out std_logic;
 return_val_2 : out std_logic;
 return_v
);

l_3 : out std_logic

 ports are 1-bit wide, std_logic types. This matches to the EDIF

tw

13.2.4 Example: Handel-C in a VHDL project

The example below demons
when VHDL is the top level of your design. The Handel-C needs to have ports to i
level, so that the VHDL can connect to them.

unsigne

ac port_in
unsigned 1 clk with {clockport=1})

oc Port
);

ac port_in
unsigned 4 sent_value)

 ();

DK Design Suite user guide

www.celoxica.com Page 180

interface port_out
 ()
 OutPort
 (unsigned 4 return_value = x);

{
 un g
 y = I
 x = y; // Write to top-level VHDL
}

You ca o e
busformat

VHDL code

The top ightly
differen fo

 EDIF generating a bus as single wires.

 clk : in std_logic;
 : in std_logic;

 sent_value_3 : in std_logic;
 return_val_0 : out std_logic;
 return_val_1 : out std_logic;
 return_val_2 : out std_logic;
 return_val_3 : out std_logic
);
end component;

Instantiating Handel-C code compiled to VHDL

component handelc_component
 port (
 clk : in std_logic;
 sent_value : in unsigned (3 downto 0);
 return_val : out unsigned (3 downto 0);
);
end component;

set clock = internal ClockPort.clk;

void main(void)

si ned 4 y;
nPort.sent_value; // Read from top-level VHDL

n c mpile the Handel-C to EDIF or VHDL. If you compile to EDIF, you can use th
 specification to specify the bus and wire name format.

 level VHDL must instantiate the Handel-C. The way you do this is sl
t r Handel-C targeting EDIF and Handel-C targeting VHDL. The example below

shows

Instantiating Handel-C code compiled to EDIF

component handelc_component
 port (

 sent_value_0
 sent_value_1 : in std_logic;
 sent_value_2 : in std_logic;

DK Design Suite user guide

www.celoxica.com Page 181

13.2.5 Synthesizing Handel-C with external VHDL

oute

ready to synthesize, you may follow a VHDL or EDIF flow:

 Handel-C to VHDL.

eonardoSpectrum to synthesize the code. Then use
era or Actel tools to place and route it.

ynplify or LeonardoSpectrum to synthesize any VHDL
 to EDIF. Use Xilinx, Altera or Actel tools to merge the EDIF files

r and place and route them.

u can co-simulate Handel-C code with VHDL using ModelSim: compile the Handel-C for
ge for ModelSim supplied in the Platform

ecting Handel-C EDIF to VHDL

If you compile a Handel-C file to EDIF 2.0.0 and wish to connect it to a VHDL component,
 aware that the ports in EDIF and VHDL may be different:

llection of single wires or a n-wire bus.

DL ports are normally described as n-bit wide cables.

The format of the EDIF port can be defined using the Handel-C busformat
specification. The particular format needed is dependent upon the synthesis

s angle-brackets to delimit
erate a multi-wire bus would

sure that the

.3 Integrating with Verilog blocks

Synthesis and place and r

When you are

• VHDL flow

Compile the

Use Precision, Synplify or L
Xilinx, Alt

• EDIF flow

Compile Handel-C to EDIF.

Use Precision, S
ponentscom

togethe

Simulation

Yo
debug, and then use the Co-simulation Brid

eveloper's Kit. D

13.2.6 Conn

you must be

• EDIF 2.0.0 ports may consist of a co

• VH

•

tool. For example, LeonardoSpectrum generate
buses, so the busformat specification used to gen
be busformat = "B<N:0>".

If you have not used busformat to generate a multi-wire bus, you can en
generated EDIF can connect to the VHDL by listing the VHDL ports as single-bit wires.

13

If you want to co-simulate Handel-C with Verilog you can use the Co-simulation Bridge
for ModelSim, provided as part of the Platform Developer's Kit.

DK Design Suite user guide

www.celoxica.com Page 182

13.3.1 Linking to the Handel-C Verilog library

he HandelC.v file which provides functions needed by all Handel-C

 Precision,

If you are targeting a Xilinx device or want to simulate your Verilog code using ModelSim,
you need to compile one of the supplied ROC files into your work library.

For simulation, use simroc.v

• For Xilinx devices, use xilroc.v

You only need to do this if the global reset (set reset) is not specified. You do not need to
ly reset to

13.3.2 Writing Handel-C code to integrate with Verilog code

Using Handel-C as the top level

In a top-level Handel-C program communicating with a Verilog module you will need:

An interface
declaration:

Prototypes the interface sort. The interface sort must have the same
name as the Verilog module. If you have only one instance of the Verilog
module in your code, and you are not referring forward to a definition,
you may incorporate the declaration into the definition.

An interface
definition:

Names the instance and defines the data that will be transmitted.

Using Verilog as the top level

In a Handel-C program communicating with a top-level Verilog entity, you only need a
port_in or port_out interface for each port going into or out of the Handel-C
component.

Handel-C to Verilog: interface declaration

The Verilog interface declaration in the Handel-C code prototypes the interface sort, and
is of the format:

interface Verilog_module_sort
 (Verilog_to_HC_port {,Verilog_to_HC_port}) //input ports
 (Verilog_from_HC_port {,Verilog_from_HC_port}); //output ports

where:

Celoxica supplies t
Verilog files.

To use Handel-C Verilog, you must add HandelC.v to your work library within
LeonardoSpectrum or Synplify.

•

use a ROC file to target Altera or Actel devices as flip-flops are automatical
zero after configuration.

DK Design Suite user guide

www.celoxica.com Page 183

• Verilog_module_sort is the name of the Verilog module. The same name
terface sort in the interface definition.

• Verilog_to_HC_port type and name of a port bringing data to the
put from Verilog) as specified in the Verilog module.

• Verilog_from_HC_port is the type and name of a port sending data from the
 to Verilog) as specified in the Verilog module.

 the Verilog side, so port names may be confusing. In

must be used as the in

 is the
Handel-C code (out

Handel-C code (input

Note that ports are seen from
Handel-C, the ports that input data TO the Handel-C must be specified first.

ndel-C to Verilog: interfacHa e definition

rilog interface definition in the Handel-C code creates an instance of the interface
t prototyped in the declaration. It also gives the names of the interface and port

e data that will be transmitted.

definition is of the format:

_module_sort
 (Verilog_to_HC_port [with portSpec]

 [with portSpec]})
 interface_Name

(Verilog_from_HC_port = from_HC_data [with portSpec]
 {, Verilog_from_HC_port = from_HC_data [with portSpec]});

Verilog_module_sort is the interface sort that you previously declared.

• Verilog_to_HC_port is the type and name of a port bringing data to the
ill have the same type as defined

 is the type and name of a port sending data from the
 (input to Verilog). This will have the same type as defined in
eclaration.

_data is an expression that is output from the Handel-C to the

xample below demonstrates how to interface Handel-C and Verilog components,
en Handel-C is the top level of your design.

The Ve
sor
instances and defines th

The

interface Verilog

 {, Verilog_to_HC_port

where:

•

Handel-C code (output from Verilog). This w
in the interface declaration.

• interface_Name is the name for this instance of the interface.

• Verilog_from_HC_port
Handel-C code
the interface d

• from_HC
Verilog.

• powith rtSpec is an optional port specification.

13.3.3 Example: Verilog in a Handel-C project

Th
wh

e e

DK Design Suite user guide

www.celoxica.com Page 184

Handel-C code

 verilog_component_instance
 (unsigned 1 clk = __clock,
 unsigned 4 sent_value = x)

 with {busformat = "B_I"};

void main(void)

{
 unsigned 4 y;

mponent_instance.return_val; // Read from Verilog

g component
}

Verilo c

The Verilog modu the Handel-C:

module verilog_component(clk, sent_value_0, sent_value_1, sent_value_2,
 return_val_1,

 re r
 input clk;
 input sent_value_0;
 in t

alue_2;

 output return_val_0;
 ou u

 output return_val_3;

endmodule

ng the
"B_I" ports
and one 1- ure that the format matches the output from your
synthe

set clock = external "D17";
unsigned 4 x;

interface verilog_component
 (unsigned 4 return_val)

 y = verilog_co
component
 x = y; // Write to Verilo

g ode

le will need an interface like this to be compatible with

 sent_value_3, return_val_0,
tu n_val_2, return_val_3);

pu sent_value_1;
 input sent_v
 input sent_value_3;

tp t return_val_1;
 output return_val_2;

Note that all the ports are 1-bit wide. This matches to the EDIF generated usi
busformat. Using a different busformat specification will give give two 4-bit

bit port, but you need to ens
sis tool.

DK Design Suite user guide

www.celoxica.com Page 185

13.3.4 Example: Handel-C in a Verilog project

The example below demonstrates how to interface Handel-C and Verilog components,
when V our design. The Handel-C needs to have ports to its top

connect to them.

interface port_in

 OutPort
 (unsigned 4 return_value = x);

set cl k

void main(void)
{

 x = y; // Write to top-level Verilog
}

le the Hand u can use
 specificatio

antiate the Handel-C. The way you do this is slightly
different for Handel-C targeting EDIF and Handel-C targeting Verilog. The example below
shows EDIF generating a bus as single wires

erilog is the top level of y
level, so that the Verilog can

unsigned 4 x;

 (unsigned 1 clk with {clockport=1})
 ClockPort
 ();

interface port_in
 (unsigned 4 sent_value)
 InPort
 ();

interface port_out
 ()

oc = internal ClockPort.clk;

 unsigned 4 y;
 y = InPort.sent_value; // Read from top-level Verilog

You can compi
the busformat

el-C to EDIF or to Verilog. If you compile to EDIF, yo
n to specify the bus and wire name format.

Verilog code

The top level Verilog must inst

DK Design Suite user guide

www.celoxica.com Page 186

Instantiating Handel-C code compiled to EDIF

sent_value_1, sent_value_2,
eturn_val_1,

 input sent_value_0;
 input sent_value_1;

 input sent_value_3;

t
 output ret val_2

ut ret val_3

le

antiatin nde mpiled to Verilog

de compon turn_val);

 input clk;
 input [3:0] sent_value;

hesizing

ce and route

• Verilog flow

• EDIF flow

Use Precision, Synplify or LeonardoSpectrum to synthesize any Verilog
components to EDIF. Use Xilinx, Altera or Actel tools to merge the EDIF files
together and place and route them.

module handelc_component(clk, sent_value_0,
 sent_value_3, return_val_0, r
 return_val_2, return_val_3);
 input clk;

 input sent_value_2;

 output return_val_0;
 output re urn_val_1;

urn_
urn

;
; outp

_

endmodu

Inst g Ha l-C code co

modu e hanl

lc_ ent(clk, sent_value, re

 output [3:0] return_val;

endmodule

13.3.5 Synt Handel-C with external Verilog

Synthesis and pla

When you are ready to synthesize, you may follow a Verilog or EDIF flow:

Compile the Handel-C to Verilog.

Use Precision, Synplify or LeonardoSpectrum to synthesize the code. Then use
Xilinx, Altera or Actel tools to place and route it.

Compile Handel-C to EDIF.

DK Design Suite user guide

www.celoxica.com Page 187

Simulation

ith Verilog using ModelSim: compile the Handel-C
ModelSim supplied in the Platform

EDIF to Verilog

nnect it to a Verilog
ts in EDIF and Verilog may be different:

t of a collection of single wires or a n-wire bus.

• Verilog ports are normally described as n-bit wide cables.

e f e be defined using the Handel-C busformat
speci icular format needed is dependent upon the synthesis
tool. example, es angle-brackets to delimit
buses, so the busformat sp generate a multi-wire bus would
be bu mat = "

ou have not busformat to generate a multi-wire bus, you can ensure that the
n connect to sting the Verilog ports as single-bit wires.

DIF blocks

-C with raw EDIF:

se Ha d instantiate one or more EDIF
o

stantiate one or more Handel-C
 the top level are declared using

port_in and port_out interfaces.

P

it to a raw EDIF component,
you must be ensure that port formats match between a component instantiation and a

ation allows you to specify EDIF
exibility to connect to raw EDIF

You can co-simul
for debug, and th

ate Handel-C code w
en use the Co-simulation Bridge for

Developer's Kit.

13.3.6 Connecting Handel-C

If you compile a Handel-C file to EDIF 2.0.0 and wish to co
component, you must be aware that the por

• EDIF 2.0.0 ports may consis

• Th ormat of th
fication. The part

EDIF port can

For LeonardoSpectrum generat
ecification used to

sfor B<N:0>".

If y used
generated EDIF ca

 the Verilog by li

13.4 Integrating with E

13.4.1 Connecting Handel-C EDIF to external EDIF

To integrate Handel

• U ndel-C as the top level of your design an
comp nents as black boxes, by defining interfaces.

OR

• Use EDIF as the top level of your design and in
components as black boxes. Handel-C ports to

ort formats

If you compile a Handel-C file to EDIF and want to connect

component instance. The Handel-C busformat specific
bus formats on a per-port basis, allowing maximum fl
from any source.

DK Design Suite user guide

www.celoxica.com Page 188

Simulating a Handel-C/EDIF design

If you want to simulate a design composed of EDIF and Handel-C blocks, use your place
he netlist can then be

same
e
n,

ition.

-C

symbol. The same name must be used

andel-

EDIF_from_HC_port is the type and name of a port sending data from the
 symbol.

n Handel-

and route tools to generate a post-PAR annotated VHDL netlist. T
used to run a timing-accurate simulation using ModelSim.

13.4.2 Writing Handel-C code to integrate with external EDIF

In a Handel-C program communicating with EDIF you will need:

An interface Prototypes the interface sort. The interface sort must have the
declaration: name as the black box or primitive. If you have only one instance of th

logic block in your code, and you are not referring forward to a definitio
you may incorporate the declaration into the defin

An interface Names the instance and defines the data that will be transmitted.
definition:

Handel-C to EDIF: interface declaration

The EDIF interface declaration in the Handel-C code prototypes the interface sort, and is
of the format:

interface
 (EDIF_to_HC_port {,EDIF_to_HC_port }) //input ports to Handel-C

EDIF_symbol

 (EDIF_from_HC_port {, EDIF_from_HC_port}); //output ports from Handel

where:

• EDIF_symbol is the name of the EDIF
as the interface sort in the interface definition.

• EDIF_to_HC_port is the type and name of a port bringing data to the H
C code (output from EDIF) as specified in the unwrapped EDIF symbol.

•
Handel-C code (input to EDIF) as specified in the unwrapped EDIF

Note that ports are seen from the EDIF side, so port names may be confusing. I
C, the ports that input data TO the Handel-C must be specified first.

Handel-C to EDIF: interface definition

The EDIF interface definition in the Handel-C code creates an instance of the interface
sort prototyped in the declaration. It also gives the names of the interface and port
instances and defines the data that will be transmitted.

The definition is of the format:

DK Design Suite user guide

www.celoxica.com Page 189

interface EDIF_symbol
 (EDIF_to_HC_port [with portSpec]

 F_to_ th portSpec]})
 c Name

EDIF_from_HC_port from_HC_data portSpec]
 , EDIF_f h portSpec]});

• EDIF_symbol is the interface sort that you previously declared.

• EDIF_to_HC_port i ng data to the Handel-
C code (output from ined in the
interface declaration.

• interface_Name is the name for this instance of the interface.

data from the
Handel-C code (input to EDIF). This will have the same type as defined in the
interface declaration.

• from_HC_data is an expression that is output from the Handel-C to the EDIF.

The example below demonstrates how to interface Handel-C and external EDIF
components, when the external EDIF is the top level of your design.

Handel-C code

em.

{, EDI
 interfa

HC_port [wi
e_

 (

 = [with
rom_HC_port = from_HC_data [wit {

where:

s the type and name of a port bringi
 EDIF). This will have the same type as def

• EDIF_from_HC_port is the type and name of a port sending

• with portSpec is an optional port specification, e.g. busformat.

13.4.3 Example: Handel-C in an EDIF project

The Handel-C needs to have ports to its top level so that the EDIF can connect to th

DK Design Suite user guide

www.celoxica.com Page 190

unsigned 4 val;

interface port_in

rt
 ()

 with {busformat = "B<N:0>"};

interface port_out
 ()

tPort
 (unsig 4 return_val = val)
 with {busformat = "B<N:0>"};

set clock = internal ClockPort.clk;

void main(void)

)

") 1) (direction INPUT))
 (port (array (rename sent_val "sent_val<3:0>") 4) (direction INPUT))
 (port (array (rename return_val "return_val<3:0>") 4) (direction OUTPUT))
)

EDIF code

The external EDIF code needs to instantiate the EDIF block generated from the Handel-C
code:

 (unsigned 1 clk)
 ClockPort
 ()
 with {busformat = "B<N:0>"};

interface port_in
 (unsigned 4 sent_val)
 ValInPo

 ValOu

ned

{
 while(1
 {
 par
 {
 val *= ValInPort.sent_val;
 }
 }
}

EDIF netlist produced from the Handel-C code

The part of the netlist that describes the interface reads:

(interface
 (port (array (rename clk "clk<0:0>

DK Design Suite user guide

www.celoxica.com Page 191

(cell edif_component

1) (direction INPUT))
l "sent_val<3:0>") 4) (direction INPUT))

return_val<3:0>") 4) (direction

xam : EDIF component in a Handel-C project

ple bel monstrates how to interface Handel-C and external EDIF
ts, wh ndel-C is the top level of your design.

 (cellType GENERIC)
 (view view_1
 (viewType NETLIST)
 (interface
 (port (array (rename clk "clk<0:0>")
 (port (array (rename sent_va
 (port (array (rename return_val "
OUTPUT))
)
)
)

13.4.4 E ple

The exam ow de
componen en Ha

DK Design Suite user guide

www.celoxica.com Page 192

Handel-C code

set clock = external "D17";
unsigned 4 x;
interface edif_component
(
 unsigned 4 return_val
)
edif_component_instance
(
 unsigned 1 clk = __clock,
 unsigned 4 sent_val = x
)
with
{
 busformat = "B"
};

void main(void)
{
 unsigned 4 y;

 while(1)

The code above generates a component (black-box) instantiation in the EDIF netlist,
which looks like this:

))

)

 {
 y = edif_component_instance.return_val; // read from EDIF component
 x += y; // write to EDIF component
 }
}

EDIF netlist produced from Handel-C code

(cell edif_component
 (cellType GENERIC)
 (view view_1
 (viewType NETLIST)
 (interface
 (port (array clk 1) (direction INPUT))
 (port (array sent_val 4) (direction INPUT
 (port (array return_val 4) (direction OUTPUT))
)
)

DK Design Suite user guide

www.celoxica.com Page 193

EDIF code

There needs to be an EDIF netlist for the black-box component, called
, with ports which look like this: edif_component

 (interface
 (port (array clk 1) (direction INPUT))
 (port (array sent_val 4) (direction INPUT))

T)) (port (array return_val 4) (direction OUTPU
)

13.5 Examples: integrating Handel-C with VHDL,

• Example 1: combinational circuit example (Handel-C top-level)

a bank circuit example (Handel-C top-level)

• Example 3: FIR filter example (VHDL top-level wrapper)

exa s

allDir\DK\Examples\Verilog

• Example 1: combinational circuit example (Handel-C top-level)

• Example 2: register bank circuit example (Handel-C top-level)

• Example 3: FIR filter example (Verilog top-level wrapper)

\DK\Examples\EDIF

1. Change the build configuration to EDIF, VHDL or Verilog as appropriate
(Build>Set Active Configuration).

2. For Verilog or VHDL examples, choose the HDL output style: select
n output style from the drop-down list.
L synthesis tool, or else choose Generic.

.v
or .vhd example files (tt17446) and the

Verilog and EDIF

VHDL examples

InstallDir\DK\Examples\VHDL

• Ex mple 2: register

Verilog mple

Inst

EDIF example

InstallDir

• Example 3: FIR filter example (EDIF top-level wrapper)

13.5.1 Integration examples: running

To synthesize the VHDL, Verilog or EDIF integration examples, you must:

Project>Settings>Linker, and then chose a
Choose the style that matches your RT

3. For Verilog or VHDL examples, pass the DK-generated .v or .vhd files, the
, reg32xlk or filter/wrapper

DK Design Suite user guide

www.celoxica.com Page 194

Handel- vhd) to your synthesis tool. If
 are
(xilroc

4. Run pla

 version of DK. Nexus PDK does

C support file (HandelC.v or HandelC.
you
file

targeting a Xilinx platform you also need to pass the appropriate ROC
.v or xilroc.vhd).

ce and route.

You can only compile these examples if you have the full
not allow you to produce VHDL, Verilog or EDIF code.

cing to VHDL

hat connects to the
HDL via an entity
ort_in and port_out

ple (Handel-C top-level)

sists

You can open the files in a text editor such as Notepad. The example also includes DK

d type as
ame as

The interface from tt17746_test.hcc is:

13.6 Examples of interfa

Examples are supplied of three projects involving interfaces to VHDL blocks. The
examples are installed in the directory DK\Examples\Vhdl.

Each consists of a Handel-C workspace, the VHDL code file for the circuit, a VHDL
wrapper file that links the VHDL to the Handel-C, and a Handel-C file t
VHDL circuit. If the Handel-C is the top level, it connects to the V
interface. If the VHDL is top-level, the Handel-C connects using p
interfaces.

You can only compile these examples if you have the full version of DK.

• Example 1: combinational circuit exam

• Example 2: register bank circuit example (Handel-C top-level)

• Example 3: FIR filter example (VHDL top-level wrapper)

13.6.1 Combinational circuit example: VHDL

The combinational circuit example (InstallDir\DK\Examples\VHDL\Example1) con
of these files:

ttl7446.vhd VHDL code that describes the combinational circuit

ttl7446_test.hcc Handel-C code that uses the combinational circuit

workspace and project files.

Combinational circuit example: interface code to VHDL

The example defines an interface sort that has port names of the same name an
 The interface sort must be the sthe VHDL signals in the circuit to be integrated.

the VHDL model's name.

DK Design Suite user guide

www.celoxica.com Page 195

interface TTL7446
 (unsigned 7 segments, unsigned 1 rbon)
 decode
 (unsigned 1 ltn=ltnVal, unsigned 1 rbin=rbinVal,
 unsigned 4 digit=digitVal, unsigned 1 bin=binVal);

TTL7446 is the name of the interface sort.

rface

e

tion

Port type

 std_logic

bin out std_logic

igit out unsigned (3 downto 0)

bin out std_logic

segments in unsigned (6 downto 0)

rbon in std_logic

13.6.2 Register bank example: VHDL

The register bank example (InstallDir\DK\Examples\VHDL\Example2) consists of these
files:

reg32x1k.vhd VHDL code that describes the register bank circuit

reg32x1k_test.hcc Handel-C code that uses the register bank

You can open the files in a text editor such as Notepad. The example also includes DK
workspace and project files.

Register bank example: interface code to VHDL

The example defines an interface sort that has port names of the same name and type as
the VHDL signals in the circuit to be integrated. The interface sort must be the same as
the VHDL model's name.

The interface from reg32x1k_test.hcc is:

Ports declared by the inte

Port nam
Port
direc

ltn out

r

d

DK Design Suite user guide

www.celoxica.com Page 196

interface reg32x1k
 (unsigned 32 data_out)
 registers

 w

s

rt type

address out unsigned (9 downto 0)

out unsigned (31 downto 0)

write out std_logic

s a bit stream, performs a volume change
ts it to 8-bit data

.vhd top-level VHDL wrapper that connects the filter to the receiver

 (unsigned 10 address = addressVal

 unsigned 32 data_in = data_inVal,

ith {extpath = {registers.data_out}},

 un
 unsigned 1 write = writeVal);

igned 1 ck = __clock,

reg32xlk is the name of the interface sort.

Ports declared by the interface

Port name Port Po
 direction

data_out in unsigned (31 downto 0)

data_in

ck out std_logic

13.6.3 FIR filter example files: VHDL

The FIR filter example (InstallDir\DK\Examples\VHDL\Example3) consists of these
files:

filter.vhd VHDL code that describes the FIR filter

receiver.hcc Handel-C code that receive
on it if required and conver

 wrapper

DK Design Suite user guide

www.celoxica.com Page 197

You can open the files in a text editor such as Notepad.

LOGIC BLOCKS IN THE FIR FILTER EXAMPLE

The example also includes DK workspace and project files.

,
L.

nd type as the VHDL signals in
ecting to the Handel-C component to be integrated.

terfaces between receiver.hcc and the VHDL wrapper are:

 (unsigned 1 DataIn) // single bit input port - name used in
L
 ReadData // name of instance of port_in
 () // no output ports
 with {vhdl_type = "std_logic_vector"}; //standard logic ports

FIR filter example: interface code to VHDL

The Handel-C receiver is a component in a VHDL design. If your top-level code is VHDL
you must use the port_in and port_out interface types to communicate with the VHD
The interfaces must have port names of the same name a
the wrapper conn

The in

interface port_in //interface type must be port_in or
port_out

VHD

DK Design Suite user guide

www.celoxica.com Page 198

interface port_out //interface type must be port_in or
port_out

ed in

 must be port_in or

 () // no input ports
riteRdy // name of instance of port_out

 DataReady); //name of output signal and its value

 //interface type must be port_in or port_out
 // single bit input port - name used in VHDL
 // name of instance of port_in
 // no output

 //interface type must be port_in or

 (unsigned 4 Vol) //4 bit wide input port (name used in

 // name of instance of port_in
 // no output
std_logic_vector"}; //standard logic ports

nterfaces

Port type

 in std_logic_vector (0 downto 0)

std_logic_vector (7 downto 0)

std_logic

std_logic

std_logic_vector (3 downto 0)

13.7 Examples of interfacing to Verilog

Examples are supplied of three projects interfacing to Verilog blocks. The examples are
installed in the directory DK\Examples\Verilog.

r
e

 () // no input ports
 WriteData // name of instance of port_out
 (unsigned 8 DataOut = Bytes_out) //8 bit wide output port (name us
VHDL)
 with {vhdl_type = "std_logic_vector"}; //standard logic ports

interface port_out //interface type
port_out

 W
 (unsigned 1 Rdy =

interface port_in
 (unsigned 1 Ack)
 ReadAck
 ();

interface port_in
port_out

VHDL)
 Volume
 ()
 with {vhdl_type = "

Ports declared by the i

Port name

Port
direction

DataIn

DataOut out
Rdy out
Ack in
Vol in

Each consists of a Handel-C workspace, a Verilog code file for a circuit, a Verilog wrappe
file that links the Verilog to the Handel-C, and a Handel-C file. If the Handel-C file is th

DK Design Suite user guide

www.celoxica.com Page 199

top level, it connects to the Verilog via a module interface. If the Verilog is top-level, the
-C connects interfaces. Handel using and

e full version of DK.

13.7.1 Combinational circuit example: Verilog

The combinatio lDir\DK\Examples\Verilog\Example1)
consists of thes

 t describes the combinational circuit

uit example: interface code to Verilog

as port names of the same name as the
. The interface sort must be the same as the

 (unsigned 1 ltn=ltnVal, unsigned 1 rbin=rbinVal,
igned 4 tVal, unsigned 1 bin=binVal);

TTL7446 is the name of the interface sort.

rts declared by t in

rt name Port d ect

n out
in out
git out

rbon in

port_in port_out

You can only compile these examples if you have th

nal circuit example (Instal
e files:

ttl7446.v Verilog code tha

ttl7446_test.hcc Handel-C code that uses the combinational circuit

You can open these files in a text editor such as Notepad. The example also includes DK
workspace and project files.

Combinational circ

The example defines an interface sort that h
Verilog signals in the circuit to be integrated
Verilog model's name.

The interface from ttl7746_test.hcc is:

interface TTL7446
 (unsigned 7 segments, unsigned 1 rbon)
 decode

 uns digit=digi

Po he terface

Po ir ion

lt

rb

di

bin out
segments in

DK Design Suite user guide

www.celoxica.com Page 200

13.7.2 Register bank example: Verilog

 register bank example (InstallDir\DK\Examples\Verilog\Example2) consists of
les:

32x1k.v Verilog code that describes the register bank circuit

32x1k_test.hcc Handel-C code that uses the register bank

n open the files in a text editor such as Notepad. The example also includes DK
ace and project files.

gister bank example: interface code to Verilog

face reg32x1k
 (unsigned 32 data_out)
isters

 (unsigned 10 address = addressVal
 with {extpath = {registers.data_out}},

 unsigned 1 write = writeVal);

32xlk is the name of the interface sort.

 declared by the interface

me Port direction

a_out in
address out

 out

13.7.3 FIR filter example files: Verilog

xample (InstallDir\DK\Examples\Verilog\Example3) consists of these
files:

The
these fi

reg

reg

You ca
rkspwo

Re

The example defines an interface sort that has port names of the same name as the
Verilog signals in the circuit to be integrated. The interface sort must be the same as the
Verilog model's name.

The interface from reg32x1k_test.hcc is:

inter

 reg

 unsigned 32 data_in = data_inVal,
 unsigned 1 ck = __clock,

reg

Ports

Port na

dat

data_in out
ck

write out

The FIR filter e

DK Design Suite user guide

www.celoxica.com Page 201

filter.v Verilog code that describes the FIR filter

eiver.hcc Handel-C code that receives a bit stream, performs a volume change
on it if required and converts it to 8-bit data

pper.v top-level Verilog wrapper that connects the filter to the receiver

 can open the files in a text editor such as Notepad.

rec

wra

You

LOGIC BLOCKS IN THE FIR FILTER EXAMPLE

The example also includes DK workspace and project files.

erilog

-level code is

e
apper connecting to the Handel-C component to be integrated.

he interfaces between receiver.hcc and the Verilog wrapper are:

interface port_in //interface type must be port_in or port_out
 (unsigned 1 DataIn) // single bit input port - name used in
Verilog
 ReadData // name of instance of port_in
 (); // no output ports

FIR filter example: interface code to V

The Handel-C receiver is a component in a Verilog design. If your top
Verilog, you must use the port_in and port_out interface types to communicate with
the Verilog. The interfaces must have port names of the same name and type as th
Verilog signals in the wr

T

DK Design Suite user guide

www.celoxica.com Page 202

interface port_out //interfac
 () // no inpu

e type must be port_in or port_out
t ports

 WriteData // name of instance of port_out
out); //8 bit wide output port (name used

port_out //interface type must be port_in or port_out

me of output signal and its value

rf _out
 (unsigned 1 Ack) // single bit input port - name used in Verilog

 // name of instance of port_in
 (); // no output ports

interface port_in //interface type must be port_in or
port_out

/4 bit wide input port (name used in

 Volume // name of instance of port_in
 // no output

DataIn in

Rdy out

DK\Examples\EDIF.

 to
via port_in and

port_out interfaces.

 (unsigned 8 DataOut = Bytes_
in Verilog)

interface
 () // no input ports
 WriteRdy // name of instance of port_out
 (unsigned 1 Rdy = DataReady); //na

interface port_in //inte ace type must be port_in or port

 ReadAck

 (unsigned 4 Vol) /
VHDL)

 ()
 with {std_logic_vector = 1}; //standard logic ports

Ports declared by the interfaces

Port name Port direction

DataOut out

Ack in
Vol in

13.8 Example of interfacing to EDIF

An example is supplied of a project interfacing to a toplevel EDIF wrapper file which in
turn interfaces to another EDIF module. The example is installed in the subdirectory

It consists of an EDIF code file for the circuit, an EDIF wrapper file that links the EDIF
the Handel-C, and a Handel-C file that connects to the EDIF wrapper

You can only compile this example if you have the full version of DK.

DK Design Suite user guide

www.celoxica.com Page 203

13.8.1 FIR filter example files: EDIF

The FIR filter example (InstallDir\DK\Examples\EDIF\Example3) consists of these
files:

filter.edf EDIF code that describes the FIR filter

wrapper.edf EDIF code that connects the EDIF filter to the Handel-C receiver

receiver.hcc

Handel-C code that receives a bit stream, performs a volume change

h as Notepad.

on it if required and converts it to 8-bit data

You can open the files in a text editor suc

LOGIC BLOCKS IN THE FIR FILTER EXAMPLE

FIR filter example: interface code to EDIF

The Handel-C receiver is a component in a EDIF design. If your top-level code is EDIF,
you mu pes to communicate with the EDIF.
The int fa as the EDIF signals in
the wr

e EDIF wrapper are:

rt_out

 ResetPort // name of instance of port_in
 (); // no output ports

st use the port_in and port_out interface ty
er ces must have port names of the same name and type
apper connecting to the Handel-C component to be integrated.

The interfaces between receiver.hcc and th

interface port_in //interface type must be port_in or po
 (unsigned 1 rst) // single bit reset input port - name used in EDIF

DK Design Suite user guide

www.celoxica.com Page 204

interface port_in // interfac
 (unsigned 1 clk) // single bit clock input port - name used in EDIF

e type must be port_in or port_out

_in or port_out
IF

 // name of instance of port_in

EDIF)
 with {busformat = "B<N:0>"}; //specify an array bus format

interface port_out //interface type must be port_in or port_out
 () // no input ports

nce of port_out
 (unsigned 1 Rdy = DataReady); //name of output signal and its value

interface port_in //interface type must be port_in or port_out
ngle bit input port - name used in EDIF

 e of instance of port_in
) tput ports

Port direction

Rdy

Ack

 ClockPort // name of instance of port_in
 (); // no output ports

interface port_in //interface type must be port
 (unsigned 1 DataIn) // single bit input port - name used in ED
 ReadData
 () // no output ports
 with {busformat = "B<N:0>"}; // specify an array bus format

interface port_out // interface type must be port_in or port_out
 () // no input ports
 WriteData // name of instance of port_out
 (unsigned 8 DataOut = Bytes_out) //8 bit wide output port (name used in

 WriteRdy // name of insta

 (unsigned 1 Ack) // si
 R adAck // name
 (; // no ou

Ports declared by the interfaces

Port name

DataIn in
DataOut out

out

in

DK Design Suite user guide

www.celoxica.com Page 205

14 Utilities
The DK pa ties.

raw2bmp ge files from a file generated by the Handel-C simulator.

ted in .

These utili f a
ulator

rder to allow
t patterns (e.g. 5-6-5 bit RGB

format).

For an exa
155).

he text
format is s nverted back to

The utilitie eC\Data.

BMPFile

w data file

format of the pixels in the raw data file
irst command line option causes the utility to generate a raw

n y
m e

0x01
0x02
0x03

ckage includes the following utili

bmp2raw converts BMP image files to a format suitable for input to the Handel-C
simulator.

generates BMP ima

They are loca InstallDir\DK\Examples\Handel-C\ExampleC\Data

ties can handle both raw binary and text file formats. This is useful i
t whereas the simconventional C program requires raw binary input and outpu

requires text input and output.

The raw data format can be configured to have the
simulation of applications requiring non-standard bi

 colour bits in any o

Example

mple of how to use these utilities, see the Edge detector example (see page

14.1 bmp2raw utility

The bmp2raw utility converts BMP image files into raw binary or text format. T
uitable for input into the Handel-C simulator. Files can be co

BMP format using the raw2bmp utility.

s are located in InstallDir\DK\Examples\Handel-C\Exampl

The general usage of the bmp2raw utility is:

bmp2raw [-b]

where:

BMPFile RAWFile RGBFile

is the source image file
RAWFile is the destination ra
RGBFile is a file describing the
Adding the –b flag as the f
bi ar file rather than a text file. To see the difference, consider a file containing the
nu b rs 0 to 3. The text version (no –b option) would look like this:

0x00

DK Design Suite user guide

www.celoxica.com Page 206

The binary version (created with –b option) would not be visible when loaded into an
editor. Ins

00000000 00 01 02 03 ** ** ** ** ….****

ile specified on the

data file. I
green and

f the colour specified by the

specified lo he destination word. The destination word will automatically be
wide in

g options:

lour. The least significant bits of

• specify multiple identifiers of the same colour. The bit counter will
ched for that colour each time you

There is an e bmp2raw utility to perform a
common c

8BPPdest.

red

6
5

2
1

tead, a hex dump of the file might look like this:

The format of the raw data file can be controlled with the RGBF
command line. This tells the utility where to place each colour bit in the words in the raw

nternally, the pixels in the BMP file are expanded to 8 bits for each of red,
blue.

The description file works by starting counting at bit 7 o
identifier word and works down through the bits of that colour placing each bit in the

cation in t
created wide enough to contain the most significant bit specified (up to 32 bits
total).

See the RGBFile worked example for an illustration of the followin

• You need not specify 8 locations for each co
each colour will be dropped if fewer than 8 locations are specified.

You can
continue to count down from the value rea
specify the colour again.

14.1.1 RGB example file

 example file 8BPPdest.rgb provided with th
onversion.

It can be u from source image and generate an 8-bit
per pixel raw image. This is useful for greyscale images.

sed to extract the red component

rgb

7

4
3

0
green
blue

DK Design Suite user guide

www.celoxica.com Page 207

14.1.2 bmp2raw RGBFile example

8BPPDest.rgb is an example file provided with the bmp2raw utility in
InstallDir
from sourc
greyscale i

14.1.3 bmp2raw RGB description file format

Location for bit 7 of red
Location for bit 6 of red
Location for bit 5 of red

Location fo
Location fo

Green

Location fo
Location fo

Location fo
Location fo
Location fo

Location fo

Location fo
Location fo

14.2 r

The raw2bmp utility is the reverse of the bmp2raw utility. It converts raw text or binary
files to BM ing of the
output from image processing applications with the standard Windows Paint utilities.

\DK\Examples\Handel-C\ExampleC\Data. It extracts the red component
e images and generates an 8-bit per pixel raw image. This is useful for
mages. You can examine the file by opening it in Notepad.

Red

Location for bit 4 of red
Location for bit 3 of red

r bit 2 of red
r bit 1 of red

Location for bit 0 of red

Location for bit 7 of green
r bit 6 of green
r bit 5 of green

Location for bit 4 of green
Location for bit 3 of green

r bit 2 of green
r bit 1 of green
r bit 0 of green

Blue

Location for bit 7 of blue
Location for bit 6 of blue

r bit 5 of blue
Location for bit 4 of blue

r bit 3 of blue
r bit 2 of blue

Location for bit 1 of blue
Location for bit 0 of blue

aw2bmp utility

P image files. The main use of the raw2bmp utility is to allow view

DK Design Suite user guide

www.celoxica.com Page 208

The raw2bmp utility is located in InstallDir\DK\Examples\Handel-C\ExampleC\Data.

The gener raw2bmp

eight will be calculated from this parameter

 data.

ta file.

 causes the utility to read a raw binary

ked example

h colour. The least
are specified. In

bits of gre

To genera

4

3

1
(Least sign

al usage of the utility is as follows:

raw2bmp [-b] Width RAWFile BMPFile RGBFile

Width the width of the image. The h
and the source file length.

RAWFile source file containing raw
BMPFile destination image file.
RGBFile file describing the format of the pixels in the raw da

Adding the -b flag as the first command line option
file rather than a text file.

14.2.1 RGBFile wor

In the RGBFile description file you need not specify 8 locations for eac
significant bits of each colour will be dropped if fewer than 8 locations
the example below, the least significant 6 bits of red and blue and the least significant 4

en are dropped.

te 8-bit pixels in the raw file with the following bit pattern:

Raw file bit
number

Colour bit

(Most significant) 7 7 Red

6 7 Green

5 7 Blue

6 Blue

6 Green

2 6 Red

5 Green
ificant) 0 4 Green

use the following RGBFile:

DK Design Suite user guide

www.celoxica.com Page 209

Red
7
2
Green
6
3
1
0
Blue

4

Each pixel number and identifier (Red, Green line.

You may a iple identifiers of the same colour. The bit counter will continue
to count d that colour each time you specify the colour
again. For lso be written like this:

6

2

3
1

ocated in
the raw da ome
pixel form

 consider the conversion of 8 bit
it must be duplicated in the red,

green and

5

or Blue) must appear on a separate

lso specify mult
own from the value reached for
 example, the above file could a

Red
7
Green

Blue
5
Red

Green

Blue
4
Green
0

14.2.2 raw2bmp RGBFile format

With the raw2bmp utility the format of the RGBFile describing where each bit is l
ta word is similar to the file used by the bmp2raw utility. Indeed, for s
ats (such as in the RGBFile worked example) a common file may be used.

As an example of where a different file may be required,
per pixel greyscale images to a BMP image. Here, each b

blue components of the destination BMP file.

For example:

DK Design Suite user guide

www.celoxica.com Page 210

red
7
6
5

0
green

6

3

1
0
blue
7
6

3
2

0

8BPPsrc.rgb is an example file provided with the raw2bmp utility in

n Notepad.

4
3
2
1

7

5
4

2

5
4

1

14.2.3 raw2bmp RGBFile example

InstallDir\DK\Examples\Handel-C\ExampleC\Data. It duplicates each bit of an 8-bit
per pixel raw file to red, green and blue components. You can examine the file by
opening it i

DK Design Suite user guide

www.celoxica.com Page 211

15 Troubleshooting

My code is too large/too slow

Use the re
resources.

eb site.

 and Warning message descriptions.

There are weird timing constraints needed when I change to version 3.1

There are new specifications needed for the clock if there are channels connecting to

setting res

lations together

affected ar
renamed t , , and .

 the
API functio NT_FUNC t also
supported the not supported by the new

DK librar

DK libraries are now only supplied with the file extensions .hch (header) and .hcl
(library file). You may need to update references to them in your code.

sults of the logic estimator to pinpoint areas of your code using the most

Look at the application notes and other resources on the Celoxica W

I don't understand the error messages

Look at the Error message (see page 213)

I need more information

Look at the Celoxica technical library at: http://www.celoxica.com/techlib/

15.1 Troubleshooting

Updating to DK3.1

other clock domains. You can sort it out for most cases by defining a clock rate and
olutiontime to 3/4 of the clock period.

15.1.1 Updating to DK 2

My plugins don't work any more

The names of the plugins supplied with DK to connect Handel-C simu
have changed. You need to update any references to these in your code. The files

e: DK1Connect.dll, DK1Share.dll, and DK1Sync.dll. These have been
o DKConnect.dll DKShare.dll DKSync.dll

The previous simulator (netlist simulator) supported undocumented features, such as
ns HCPLUGIN_GET_VALUE_COU and HCPLUGIN_GET_VALUE_FUNC. I

 data structure. These are HCPLUGIN_VALUE
simulator.

Values can now be passed to and from Handel-C by calling parameterized C or C++
functions from Handel-C and Handel-C functions from C or C++.

y functions/macros don't work any more

DK Design Suite user guide

www.celoxica.com Page 212

The standard macro library (stdlib.hch) and fixed-point library (fixed.hch) now form
part of the ill
need to update references to them on the Linker tab in Project Settings or the Directories

My varia

With previous versions of the compiler, some local non-static variables may have
defaulted to

You must atic variables to z e);

15.2 T

How can ols satisfy timing constraints

•

• paranoia (especially if resolutiontime is used). This will increase

• rate (if possible)

•

ed clock frequency

You could

egister

•

FIFOs use

 Platform Developer's Kit. If you have used macros from these libraries you w

tab in Tool options.

bles have weird values and they used to be fine

 0.

now explicitly assign local non-st ero (or some other valu
lt initial valuetheir defau is undefined.

roubleshooting: multiple clock domains

 I make place and route to

Consider

Decreasing resolutiontime

OR

 increasing minperiod if specified

(Note that unreliable hardware may ensue if these values are too close to
safety limits)

Increasing
latency.

Decreasing

Increasing unconstrainedperiod

15.3 Troubleshooting: FIFOs

My FIFOs do not run at the requir

• read and write directly from/to a r

use a block RAM rather than a LUT RAM or SelectRAM

• Choosing the size of the FIFO so it only uses one memory block

FIFOs seem to have erratic timing

a different implementation if they are an exact power of 2.

DK Design Suite user guide

www.celoxica.com Page 213

15.4 Error messages

Most error messages are relatively intuitive. Some of the less obvious ones will be due to
ilable or in the wrong format, or

the system

explanatio

The simulator also forwards errors from plugins that have been written using the Plugin

Compiler

rform arithmetic on a void pointer because the size of the object

"Assignme

gnments that would potentially allow modification of

 con
 con

ment; if this were allowed...
 * p
 }

ie
r the clkpulselen is too large, or you have

 str
 S x

 x.Bill; without the definition
 struct S

 {
 int Bill;
 };

system problems, such as files being corrupted, unava
 not having enough disk space to write to a file.

Some of the error messages are listed below in alphabetical order with a brief
n.

API.

 and simulator error messages

"Arithmetic operations are not permitted on a 'void' pointer"

You cannot pe
being pointed to is not known. For example:

void *p;

++p; // not allowed

nt loses 'const' qualifier"

You cannot perform assi
data qualified as const. For example:

 {
st int 4 ci = 5;
st int 4 * ptr_ci;

 int 4 * ptr_i;
 ptr_ci = & ci;
 ptr_i = ptr_ci; //banned assign

tr_i = 3; //...then this would change the value of ci

"At least one pulse specified by 'string' crosses Handel-
C clock cycle boundary"

You have specified a clock pulse length for the RAM clock which does not l
inside a Handel-C clock cycle. Eithe
offset it too much.

"Attempt to access partial struct/union 'string'"

Struct or union not fully defined. E.g.

uct S;
;

DK Design Suite user guide

www.celoxica.com Page 214

"Bi-directional interfaces using the 'string' standard
not supported by current family"

There is a list of the I/O standards supported by different devices in the
Handel-C Language Reference.

"Call to recursive function 'string'. (Not supported by Handel-C)"

Functions cannot be recursive in Handel-C. Use macro procedures or macro
expressions instead.

"Cannot achieve requested resolution time. Try decreasing it or increasing
paranoia."

Your constraint on resolutiontime is too tight. Increase paranoia to allow it
to be achieved in multiple clock cycles, or reduce resolutiontime

"Cannot compile object - not all information is known"

Could not infer a width or type etc. E.g. int undefined x;

"Cannot have a 'shared expr' of this type"

You may only use integral types, pointers and aggregates as the return type
for a shared expr.

"Cannot initialize 'ports' memory"

You cannot initialize a memory where the ports specification is non-zero. For
example:

ram raz[2] = {1, 2} with {ports = 1}; //illegal

"Cannot target EDIF - not all information is known"

Could not infer a width or type etc. E.g. int undefined x;

"Cannot target RTL level Verilog - not all information is known"

Could not infer a width or type etc. E.g. int undefined x;

"Cannot target RTL level VHDL - not all information is known"

Could not infer a width or type etc. E.g. int undefined x;

"Cannot target simulator - not all information is known"

Could not infer a width or type etc. E.g. int undefined x;

"Cast loses 'const' qualifier"

You cannot perform type conversions that would potentially allow modification
of data qualified as const. For example,

 {
 const int 4 ci = 5;
 const int 4 * ptr_ci;
 int 4 * ptr_i;
 ptr_ci = & ci;
 ptr_i = (int 4 *) ptr_ci; //banned cast; if this were allowed...
 * ptr_i = 3; //...then this would change the value of ci
 }

DK Design Suite user guide

www.celoxica.com Page 215

" 'chanin' is only

chanin and
supported in simulatio target"

 chanout are used to creat
DK simulator cannot determine when
simulating buses.)

ulation target"

chanin and chanout are used to creat
DK simulator cannot determine when

' opt

eting
compiler.

been ecified"

 is requ domain.

nnot be

el. H
type.
const chan <int 8> x; //not allo

nnot
 type

l. How

ot al

 Plea

 licenc
he lo ion of the floating licence file is set by
CENSE .

ere may al
same name.

built b
 Proba
ject's ot its declaration).

ct of u

his o

r of u
then n

compiler could infer the width.

n

e channels when simulating buses. (The
 input and output should occur when

" 'chanout' is only supported in sim

e channels when simulating buses. (The
 input and output should occur when

simulating buses.)

" '-cl' option specified without '-s ion"

 the simulator (-s) via the command line The -cl option is used when targ

"Clock rate is required but has not sp

A clock rate ired for this clock

" 'const' or 'volatile' qualifier ca used on a
channel. Move qualifier to underlying type?"

You cannot define a const chann owever, the channel could have a const

wed

chan <const int 8> x; //OK

" 'const' or 'volatile' qualifier ca be used on a
signal. Move qualifier to underlying ?"

You cannot define a const signa ever, the signal could have a const
type.
const signal <int 8> x; //n lowed

signal <const int 8> x; //OK

"Could not check out licence for ...

Check the details of the floating
se check installation of FlexLM."

e file; you may not be licensed for
certain Handel-C HDL outputs. T cat
the environment variable LM_LI _FILE

"Could not create temporary file"

Your hard disk may be full, or th ready be a read-only file of the

"Could not determine which clock to use for ''string''.

An object requiring a clock was ut the compiler couldn't work out which
clock it should be connected to. bly caused by an unused object (the

 use and ncompiler finds clocks from an ob

"Could not expand 'typeof'"

You are using typeof on an obje nknown type.

"Could not infer information about t bject"

You may have declared a pointe
variable of unknown width and

nknown width and not used it, declared a
ever used it in a context where the

DK Design Suite user guide

www.celoxica.com Page 216

"Could not infer width of enumerated

Probably d
 type

ue to defining an enum that is

inati

The Handel-C compiler tries to break combinational code loops by inserting
 do this explicitly. For example,

 {
 delay;
 }

tput

er (e.g
t. (E.g. not enough disk space,

ternal tool not found (preprocessor or

Error when the compiler cannot run t

'extern "C" ' and 'extern "C++" ' not supported for EDIF, VHDL or

ode w n building for Release or Debug.

 Watc
lect, trysema, s

ndel-C does not support side effects i

Expressions cannot take any clock cycles in Handel-C
se th

assigning b+1 to b which requires on

hese

oc

ive ' ring'"

ts, or the ports are of the wrong width. For
ed two

n decl with the wrong number of input
s_in may only have one input port, a

bus_out may only have one output p
port, one output port and one tristate condition, a

"

cts or arrays from a function.

"

 never used.

"Design contains an unbreakable comb onal cycle"

delay statements. It is better to

 while (x!=3)

"Error while compiling simulation ou ('string')"

The back end simulation compil . VC++) failed to compile the simulation
outpu could not find file, illegal option specified
in -cl, internal compiler error etc.).

"Ex backend C compiler not in path)"

he C preprocessor or the C compiler used
to compile the simulation .dll.

"
 Verilog output"

You can only link to C or C++ c he

"Evaluation of ... is not supported"

The expression evaluator in the
containing function calls, let, se

h window cannot display expressions
trings, & or assert.

"Ha n expressions"

. For example, if
e ++ operator has the side effect of (a<b++) is not permitted becau
e clock cycle.

"Illegal function declaration"

You may have missed the parent s from your function declaration.

"Illegal 'macro proc' expansion"

You have probably used a macro pr instead of a macro expr.

"Illegal ports for technology primit

You have the wrong number of por
st

example, you could have declar output ports for an AND primitive.

"Illegal ports on standard bus type"

A built-in interface sort has bee ared
and/or output ports. For instance, a bu

ort, a bus_ts may only have one input
nd so on.

"Illegal return type for a function.

You can only return integers, stru

DK Design Suite user guide

www.celoxica.com Page 217

"Illegal right hand side for '&' operator"

ss of something without an address (e.g., a

You have attempted to store an architectural type or a structure in an off-chip
memory.

"Illegal use of identifier 'string'"

Probably caused by using a typedef name as a variable.

"Illegal use of 'releasesema()' "

Missing trysema() statement.

"Illegal value for 'base' spec (defaulting to base 10)"

base specification not 2, 8, 10 or 16.

"Integer used as a pointer must be zero"

Probably caused by casting or comparing a constant to a pointer. You can only
do so with 0 (the null pointer) e.g. (int *)0;.

"Invalid input file"

infile in wrong format.

"IO standard selection ('standard' spec) is not supported
for clock sources not assigned to dedicated clock
inputs ('clockport' spec)"

In some Xilinx devices, you can only specify I/O standards for clocks on
dedicated clock input pins. These pins are chosen by default by the DK
compiler, but you can disable this by setting the clockport specification to
zero.

"'macro expr' declarations have differing parameters"

Prototype and declaration vary in number of parameters.

"'macro proc declarations have differing parameters"

Prototype and declaration vary in number of parameters.

"Memory cannot be declared as both 'offchip' and 'ports'"

Caused by declaring memory as off-chip with the offchip specification and
declaring it as on-chip in foreign code using the ports specification.

"Memory forms do not match"

Caused by comparing two types of memory (e.g. one is ram int x[1] and the
other is rom int y[1])

"Minperiod and resolutiontime cannot be used at the same time."

Caused by using both minperiod and resolutiontime as specifications on
the clock. Use minperiod if you have set paranoia to 0 and resolutiontime
in all other cases (You may be able to use resolutiontime in all cases in later
versions of DK.)

"Object cannot be stored in ram/rom/wom memory"

You have attempted to store an architectural type in a memory.

You have tried to find the addre
constant).

"Illegal type for off-chip memory"

DK Design Suite user guide

www.celoxica.com Page 218

"Pin 'string' feeds multiple sequential blocks, which may
 lead to unexpected behaviour. Consider using a clocked
interface"

You have an input which is not synchronized with the Handel-C clock which is
feeding multiple blocks. The values in the blocks may be different on the same
clock cycle. For example, if it is feeding two flip-flops, if the first flip-flop is
updated before the clock cycle and the second afterwards, both flip-flops can
be read after the first clock cycle but only one will have been updated. To
prevent this behaviour, use a clocked interface or bus.

"Pointer offset or array index must be integral"

Indices to arrays and offsets to pointers must be expressions of integral type.
They cannot be types, or non-integral expressions. For example:
Tstruct MyStruct s;
int *p;
int i [4];
*(p + s); // not allowed
i [s]; // not allowed T

"Port 'string' appears more than once in design
(port_in or port_out with no identifier?)"

You have two ports declared with the same name (or possibly without a
name).

"Port 'string' appears more than once in external
component declaration"

You have two ports declared with the same name in the same interface.

"Rate must be specified if resolutiontime is.

You must specify a clock rate if you have specified a resolutiontime for a
given clock domain.

"Receive from channel in more than one clock domain"

Channels that connect between clock domains must be unidirectional.

"Send to channel in more than one clock domain"

Channels that connect between clock domains must be unidirectional.

"'shared expr' declarations have differing parameters"

Prototype and declaration vary in number of parameters.

"Simulator is not responding. Terminate simulation process?"

This message appears on a dialog if you use the Break or Stop Debugging
commands when stepping through C/C++ code in DK. Select Yes to stop the
simulation.

"Source code contains preprocessor statements"

There still appear to be pre-processor statements in your code after pre-
processing (maybe be caused by unrecognized #statement).

"Syntax error"

Syntax error in source code.

DK Design Suite user guide

www.celoxica.com Page 219

"Timing constraints specified using the 'string' spec may not be zero"

You cannot have a bus_in interface with the intime specification set to zero,
or a bus_out interface with the outtime specification set to zero, as signals
cannot be passed in or out in zero time.

"Unknown specification identifier - 'string'"

Unknown object specification identifier (with {spec_identifier = ...})

"Unsupported family: 'string' "

Check whether your device is supported by DK. See the Summary of
supported devices in the Handel-C Language reference.

"Unterminated string constant"

Missing closing quotes.

"Un-supported synthesis tool: 'string'"

Check the list of supported VHDL/Verilog synthesis tools in the DK User Guide.

"Variable 'string' is used from more than one clock domain"

Data must be passed to different clock domains using a channel or an
interface. Variables cannot be shared between clock domains

"'with' cannot be used on a declaration"

Object specifications (e.g. with {busformat = "B[N:0]"}) can only be
applied to definitions of objects, not to declarations.

"'with' on anonymous declaration is not permitted"

You have used 'with' on a declaration with no name e.g. struct s{} with
{show = 1}

15.4.1 DK environment error messages

"DK cannot continue with Find in Files."
Details:

File could not be opened or read.

"DK design suite could not insert the project file in to the workspace."
Details:

File could not be opened or read.

"DK design suite could not load the browse-info database file "

File could not be opened or read.

"DK design suite could not start the simulator."
Details:

File could not be opened or read.

"None of the simulator DLLs have any clocks defined."

You have no main programs associated with clocks in your compiled code.

DK Design Suite user guide

www.celoxica.com Page 220

"The simulator 'string' does not have any clocks defined."

You have built a function with no clock and attempted to simulate it. You
should have a clocked main function that interfaces to the unclocked function.

"The symbol 'string' is not defined."

The cursor is not on a known symbol or a symbol has not been selected in the
file.

"There is no browse information for the project string."

You did not have Save browse info selected when you compiled the file.

15.5 Warning messages

Most warning messages are relatively intuitive. Some of the less obvious ones are listed
in alphabetical order with a brief explanation. Some of the error messages are also
described in the DK User Guide.

"'base' not supported on aggregate members - ignoring"

You can only apply the base specification to the whole of a struct, interface
or mpram, not to the individual elements.

"Breaking combinational cycle (continue statement) - may alter timing"

The Handel-C compiler tries to break combinational code loops. It is better to
do this explicitly, e.g. by inserting a delay statement.

"Cannot open delay file. Timing estimation will revert to logic levels"

The logic estimator uses a file (DelayFile.hcd) for storing delays through
logic elements for different devices. This file may be corrupt or missing.

"Channel is never received from but has a sender."

A channel has been sent to but nothing reads from it.

"Channel is never sent to but has a receiver."

A channel is read from but nothing has been sent to it.

"Current FPGA family not supported by technology mapper"

A list of the devices supported for technology mapping is given in the DK User
Guide.

"Data specs ignored for EDIF bus 'string' "

If you use a data specification and a busformat specification, the data
specification will be ignored.

"Declaration of 'string' shadows function parameter"

A local variable has the same name as a function parameter.

"Excessive value of paranoia specification. Values over two do not improve
reliability."

The paranoia specification should only need to be set above 2 in unlikely
circumstances. It has been set to a value of 10 or over.

DK Design Suite user guide

www.celoxica.com Page 221

"Function 'string' may be recursive"

Functions can not be recursive in Handel-C. Use macro procedures or macro
expressions instead.

"Illegal character in input (ignored)"

Likely to be due to a non-ASCII character in an input file.

"IO standard selection ('standard' specification) not supported for HDL
output - ignored"

You can only use the standard specification (e.g. with {standard =
"HSTL_III"}) for EDIF output.

"Netlist expansion 'for area' not supported for current device family -
performing default expansion"

The -N+area option optimizes arithmetic hardware for size in Actel devices. It
is not supported for other devices. If you are using the GUI, and are targeting
EDIF output, check that the Expand Netlist for option on the Compiler tab in Project
Settings is set to Speed, not Area.

"Passing Handel-C type through '...' - cannot automatically check types"

If you are using extern "C" or extern "C++" and use an ellipsis in the
function declaration, DK cannot perform type checking. For example:

extern "C" int printf(const char *format, ...); // no type checking

"Possible direct or indirect type self-reference"

The type cannot be unambiguously inferred; it may be a circular type. For
example:

chan c;

c ! & c;

could lead to the inference that c has a type which is a channel of type pointer
to itself.

"Properties specification on black box interface 'string' is ignored"

You can only use the properties specification for VHDL or Verilog output if
you have set the bind specification to 1.

"Property specs ignored for VHDL"

You can only use the properties specification for EDIF output.

"Property specs ignored for Verilog"

You can only use the properties specification for EDIF output.

"Pulse position list for spec 'string' is empty - memory will not be
clocked during %s cycles"

If you have used the rclkpos or wclkpos specifications with empty lists,
memory will not be clocked during the read clock or write clock cycles. For
example, memory will not be clocked during the write clock cycle if you use
the code below:

 mpram
 {

DK Design Suite user guide

www.celoxica.com Page 222

 rom int 1 ro[16] with {rclkpos = {1}, clkpulselen = 0.5};
 wom int 1 wo[16] with {wclkpos = {}, clkpulselen = 0.5};
 }MyMpram;

"Retimer is only supported for EDIF targets"

You cannot use the retimer unless you are targeting EDIF

"Sharing pin 'string' between tri-state buses - possible enable conflicts"

Do not enable both sources at the same time; this could lead to hardware
damage.

"Specify resolutiontime (Use minperiod if paranoia set to 0)"

You are using channels which cross clock domains but you have not specified
the synchronization timing (Try setting resolution time to 3/4 clock period.)

"'string' specification not supported on interfaces using differential IO
standards - ignored"

If you have used a specification which conflicts with the use of a differential
I/O standard, it will be ignored. For example:
Tinterface bus_in (unsigned 2 datain) I() with {standard =
"LVDS25",
data = {"P1", "P2"}, {"P3", "P4"}, strength = 2} T T// strength spec
will be ignored

 "This asynchronous channel must have a FIFO, pretending fifolength was set
to one."

The channel crosses clock domains and both ends are either within a try reset
or within a prialt. It has been converted into a one-place FIFO.

"Timing constraint ('string' spec) not supported on ports by P+R for
 current device family - ignored"

You cannot use intime on port_in interfaces, or outtime on port_out
interfaces for some device types.

"Timing constraint ('%s' spec) not supported on generic interface ports
 by P+R for current device family - ignored"

You cannot use intime or outtime on generic interfaces for some device
types.

"'True' dual-port mode not supported by Stratix M512 blocks - setting block
type to AUTO"

You can only use dual-port RAMs with one ROM port and one WOM port in
M512 blocks. If you want to use an MPRAM with two RAMs, target the 4K or
MRAM instead.

DK Design Suite user guide

www.celoxica.com Page 223

16 Index
.

.dll 51, 74, 82

A

ANSI-C53, 179, 181

arrows.................................. 102, 107

auto-indent 43

B

base.......................................43, 103

breakpoints 34, 108, 109, 110

Browse commands 35, 36, 41

build process72, 74, 75, 76, 82, 85, 86,
180

C

C language................................... 179

C++.. 179

circuit examples.......207, 208, 212, 213

combinational circuit example .. 207, 212

commands 29, 30, 36, 37, 38, 44, 45

compilation reports..........77, 78, 79, 81

compiler 74, 90, 93, 98, 99

configurations..........10, 55, 56, 77, 104

connecting 194, 200

constraints70, 143, 145

current directory 52

Customize Toolbars command........... 41

D

debug........ 20, 21, 43, 64, 97, 101, 104

Debug tab...................................... 43

definitions 35

dependencies 16, 57, 58, 60, 72

directories.................................44, 52

disabling breakpoints 109

docking windows............................. 26

E

EDIF.......................139, 142, 143, 200

Edit menu30

editor 19, 42, 102

Example1.............................. 207, 212

Example2.............................. 208, 213

Example3.......................209, 214, 216

examples55, 106, 114, 115, 156, 157,
158, 160, 162, 164, 168, 181, 182, 183,
184, 206

F

FIFOs

troubleshooting 227

File View 16, 17

files...............................10, 29, 51, 53

Find commands...............................31

Find in Files command......................31

FIR filter209, 214, 216

floating windows26

folders 51, 54

font...43

Format tab43

full screen26

functions............................... 179, 181

H

Handel-C Verilog library 195

Handel-C VHDL library 189

HandelC.v 195

HandelC.vhd................................. 189

hardware 76, 139, 146, 150

HDLs10, 77, 143, 146, 149, 151, 153,
189, 194

I

icons17, 18, 19, 20, 21, 25

include path44, 55, 65, 70

integrating188, 189, 194, 200

interfaces................190, 195, 196, 201

DK Design Suite user guide

www.celoxica.com Page 224

interfacing to foreign code189, 190, 194,
195, 196, 200, 201

ISO-C................................... 179, 181

L

libraries 189, 195

location of files31, 52

M

managing....................................... 51

MaxPlus II.................................... 143

menus 27, 29, 30, 36, 37, 38, 44, 45

multiple clocks

troubleshooting 227

O

options42, 69, 90, 95

P

paths... 52

place and route tools 143

ports189, 194, 200

project settings.................. 37, 62, 104

projects 11, 37, 50, 51, 53, 56, 58

Q

Quartus 143

R

receiver.hcc....................209, 214, 216

references...................................... 35

register bank circuit example ... 208, 213

regular expressions 31

removing 33, 54, 109

replicated code 110

report_html_format.xml81, 82

reports .. 77

generating 79

troubleshooting viewing reports 82

viewing 81

reset ... 188

reset on configuration188, 189, 195

retiming................................ 122, 123

limitations 129

ROC188, 189, 195

S

search paths........................ 55, 70, 73

selection margin..............................42

simroc.v................................ 188, 195

simroc.vhd 188, 189

simulations...................20, 83, 97, 101

simulator 83, 97, 101, 105, 106

splitting windows.............................26

stacks.log.......................................43

statements................................... 102

stepping through code 105, 107

Symbol View...................................18

symbols ...35

T

tabs ..43

target 10, 93

targeting hardware 194, 199

text display43

threads...................................22, 102

timing..............................70, 143, 145

Tool options dialog42

toolbars 25, 26, 27

Tools menu 40, 42

tutorials 156, 206

V

Verilog... 194

VHDL... 189

W

Window menu.................................44

windows...26

workspaces 43, 55

writing source code189, 195, 201

DK Design Suite user guide

www.celoxica.com Page 225

X

xilroc.v 188, 195

xilroc.vhd.............................. 188, 189

	Getting started with DK
	Starting DK
	Creating a new file
	Writing source code
	Build configuration types
	Project development sequence

	Windows and Toolbars
	Workspace window
	File view
	Symbol view

	Code editor window
	Code editor icons
	Context menu - code editor window
	Syntax colour codes

	Output window icons
	Debugger interface
	Debug buttons and icons
	Call Stack window
	Clocks/Threads window
	Variables window
	Watch window

	Toolbars
	Standard toolbar buttons
	Status bar

	Customizing the DK GUI
	Customizing windows
	Customizing toolbars
	Customizing menus

	Menus and commands
	File menu
	New dialog (File>New)

	Edit menu
	Find commands
	Finding using regular expressions
	Bookmarks
	Breakpoints dialog
	Using browse commands

	View menu
	Project menu
	Project settings

	Build menu
	Selecting a configuration

	Debug menu
	Tools menu
	Source browser
	Customize Toolbars... command
	Tools Options dialog

	Window menu
	Windows dialog

	Help menu
	Keyboard shortcuts

	Project development
	Project types
	Creating a project

	Managing project files
	What files are generated for a project?
	Adding files to a project
	Multi-file projects
	Linking multiple files
	Removing files or folders from a project
	Search paths for project files

	Workspace and project directories
	Adding an existing project to a workspace

	Configuring a project
	Defining project configurations
	Complex projects

	Project and file dependencies
	File dependencies
	Project dependencies
	External dependencies

	Properties dialog
	General tab
	Inputs tab
	Outputs tab
	Dependencies tab

	Project and file settings
	Independent settings for files
	General tab
	Debug tab
	Preprocessor tab
	Synthesis tab
	Optimizations tab
	Chip tab (Project settings)
	Linker tab
	Build commands tab (Project settings)
	Library tab

	Building a project
	Build process
	Running the compiler
	Setting up code for debug
	Building and compiling for debug
	Building with library and object files
	Preparing to build for hardware
	Compiling for release or target
	Report files

	Build commands in DK
	Simulator compilation command lines
	Generating a standalone executable
	Generating an .obj file
	Post-build commands

	Custom build commands
	Specifying a custom build
	Build commands, outputs and dependencies
	File and directory macros

	Command line compiler
	Summary of command line options
	Compiler target options
	Pass options to preprocessor
	Optimizer options
	Compiler debugging options
	Targeting the simulator
	Detecting simultaneous access to functions, memory and chann

	Simulation compilation control options
	Pass options to command line
	Pass options to backend compiler

	Environment variables

	Simulation and debugging
	Using the simulator
	Starting debug and simulation
	Debug symbols in the editor window
	Selecting a clock
	Selecting a thread to follow
	Following function calls in the Call Stack window
	Examining variables

	Using the debugger
	Generating debug information
	Debug project configuration
	Stepping through code
	Advancing through code
	Arrow behaviour during step and advance
	Using breakpoints

	Optimizing code
	Logic estimator
	Logic area and depth summary
	Area and delay estimation example
	Information on logic area
	Information on combinatorial paths and delay

	Optimizing code example
	Optimizing code example: original program
	Building the optimizing code example
	Optimizing code example: stage 1
	Optimizing code example: stage 2

	Targeting hardware
	Targeting a particular synthesis tool
	ALU mapping
	Technology mapping
	Retiming
	How retiming works

	Optimizing arithmetic hardware in Actel devices
	Targeting hardware via EDIF
	EDIF block and net names
	Specifying wire name format in EDIF
	Setting up place and route tools
	Preparing MaxPlus II to to compile Handel-C EDIF
	Preparing Quartus to compile Handel-C EDIF
	Importing timing constraint files into Actel Designer

	Targeting hardware via VHDL
	VHDL file structure
	Naming of VHDL files and entities
	Mapping Handel-C functions to VHDL entities

	Targeting hardware via Verilog
	Verilog file structure
	Naming of Verilog files and modules
	Mapping Handel-C functions to Verilog modules

	Tutorial examples
	Example 1: Accumulator example
	Compiling and simulating example 1

	Example 2: Pipelined multiplier example
	Example 2: Index array test code details
	Compiling and simulating example 2

	Example 3: Queue example
	Example 3: detailed explanation
	Compiling and simulating example 3

	Example 4: Clients / server example
	Example 4: code details
	Compiling and simulating example 4

	Example 5: Microprocessor example
	Example 5: microprocessor description
	Compiling and simulating example 5

	Example 6: clock manager example
	Example 6: description of program
	Compiling example 6

	Porting C to Handel-C
	Stages in porting C to Handel-C
	Deciding how the software maps to the hardware
	Converting the program from C to Handel-C
	Using the extra operators available in Handel-C
	Adding fine grain parallelism
	Adding hardware interfaces

	Porting C to Handel-C: Edge detector example
	The original program
	Stage 1: First pass conversion to Handel-C
	Stage 2: First optimizations of the Handel-C program
	Stage 3: Adding fine grain parallelism
	Stage 4: Further fine grain parallelism
	Stage 5: Adding hardware interfaces

	Integrating C/C++ files
	Calling C/C++ functions from Handel-C
	Compiling and linking in a C/C++ file
	Build commands to compile C/C++ files

	Calling Handel-C functions from C/C++
	Calling Handel-C functions from C/C++: example
	Calling Handel-C functions from C++: tutorial

	Using extern C: bitonic sort example
	Compiling and simulating the bitonic sort example

	Porting C++ to Handel-C: HDLC example
	Description of the HDLC example
	Compiling and simulating the HDLC example

	Integrating Handel-C with VHDL, Verilog and EDIF
	Reset on configuration
	Integrating with VHDL blocks
	Linking to the Handel-C VHDL library
	Writing Handel-C code to integrate with VHDL code
	Example: VHDL within a Handel-C project
	Example: Handel-C in a VHDL project
	Synthesizing Handel-C with external VHDL
	Connecting Handel-C EDIF to VHDL

	Integrating with Verilog blocks
	Linking to the Handel-C Verilog library
	Writing Handel-C code to integrate with Verilog code
	Example: Verilog in a Handel-C project
	Example: Handel-C in a Verilog project
	Synthesizing Handel-C with external Verilog
	Connecting Handel-C EDIF to Verilog

	Integrating with EDIF blocks
	Connecting Handel-C EDIF to external EDIF
	Writing Handel-C code to integrate with external EDIF
	Example: Handel-C in an EDIF project
	Example: EDIF component in a Handel-C project

	Examples: integrating Handel-C with VHDL, Verilog and EDIF
	Integration examples: running

	Examples of interfacing to VHDL
	Combinational circuit example: VHDL
	Register bank example: VHDL
	FIR filter example files: VHDL

	Examples of interfacing to Verilog
	Combinational circuit example: Verilog
	Register bank example: Verilog
	FIR filter example files: Verilog

	Example of interfacing to EDIF
	FIR filter example files: EDIF

	Utilities
	bmp2raw utility
	RGB example file
	bmp2raw RGBFile example
	bmp2raw RGB description file format

	raw2bmp utility
	RGBFile worked example
	raw2bmp RGBFile format
	raw2bmp RGBFile example

	Troubleshooting
	Troubleshooting
	Updating to DK 2

	Troubleshooting: multiple clock domains
	Troubleshooting: FIFOs
	Error messages
	DK environment error messages

	Warning messages

	Index

