Celoxica

DK4

DK Design Suite user guide

For DK version 4

DK Design Suite user guide

Celoxica

Celoxica, the Celoxica logo and Handel-C are trademarks of Celoxica Limited.

All other products or services mentioned herein may be trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described
in, this document may be adapted or reproduced in any material form except with the
prior written permission of the copyright holder.

The product described in this document is subject to continuous development and
improvement. All particulars of the product and its use contained in this document are
given by Celoxica Limited in good faith. However, all warranties implied or express,
including but not limited to implied warranties of merchantability, or fitness for purpose,
are excluded.

This document is intended only to assist the reader in the use of the product. Celoxica
Limited shall not be liable for any loss or damage arising from the use of any information
in this document, or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general
guidance only.

Copyright © 2005 Celoxica Limited. All rights reserved.
Authors: SB
Document number: UM-2005-4.2

Customer Support at http://www.celoxica.com/support/

Celoxica in Europe Celoxica in Japan Celoxica in the Americas

T: +44 (0) 1235 863 656 T: +81 (0) 45 331 0218 T: +1 800 570 7004

E: sales.emea@celoxica.com E: sales.japan@celoxica.com E: sales.america@celoxica.com

www.celoxica.com

DK Design Suite user guide —

Celoxica
Contents

1 GETTING STARTED WITH DK ettt et et e et e et e et e et eae e eae e raanaens 10
I I 7 = i o T 10 1 10
1.2 CREATING A NEW FILE 1 uttttteei et eeaaeeaa e eeaaeeaaeaasnasensenaaennns 10
1.3 WRITING SOURCE CODE .. uuttttntetateatenenneenntensenarnassenssenseennns 10
1.4 BUILD CONFIGURATION TYPES 1t itttiittiattatsenieeenaeensenesnasennsenneennns 10
1.5 PROJECT DEVELOPMENT SEQUENCE ...uuuuetuneeenneeennseennaeeennaeeennnnns 11
2 WINDOWS AND TOOLBARS . et ttttatttite et teteentsesteneenaserassenssesareaneens 13
2.1 WORKSPACE WINDOW .. tttiettettnsenneeneenneennssennsenesnaseenssenseennns 13
D2 Nt T 11N 14
2.01.2 SYMBOI VIBW ettt e, 16
2.2 CODE EDITOR WINDOW .. uutttitttettasenneeensenneennsensenesnsseenassensernnns 16
P2~ W OTe Yo (=3 =Yo [(o] gl T 0] o £ 17
2.2.2 Context menu - code editor WINAOW.......ooviiiiiiiiiiiiiiiie i eeeeeeeeen 17
2.2.3 SYNTAX COIOUN COUBS ...ttt ettt et ettt e e e e e aee e eaaans 17
2.3 OUTPUT WINDOW FCON S it tttiaeteasenaeneaaensneesnsesnsesaseerasereasnnens 18
2.4 DEBUGGER INTERFACE ... uttttttteae e eeeenaenrensenseasreassenaeennns 18
2.4.1 Debug BUttoNS and ICONS. ...t e 19
2.4.2 Call StACK WINAOW ...ttt eieeae e e eaaaaaaaeeees 20
2.4.3 CloCKS/Threads WINOOW.ouiiiii ettt ettt reeeeeeens 20
2. 4.4 Variables WINOOWt ettt eaeee e e e aaaaaaneeees 21
P2 B I VY= (od Y71 U (o 1Y 22
P2 Y 1 T T =Y =3 22
2.5.1 Standard toolbar BULTONScoiiiiiii ettt eeaeaaaeeaes 23
P2 S T) = X 1 1< o - | 23
2.6 CUSTOMIZING THE DK GUIL ..o e 23
2.6.1 CUStOMIZING WINAOWSttt ettt et e et e e e e e ane e nes 23
2.6.2 CustomMizing TOOIDAIS ... s 24
2.6.3 CUSTOMIZING MEBNUS ..ttt ettt ettt et et e e e e e e e e e eeean e e e e aaanneeeenanns 25
3 MENUS AND COMMANDS . ttttttttatenneeneenneenneennnsenneenneennerassenssensernnns 26
B Tt O e I 1Y/ =N 26
3.1.1 New dialog (FIle=NEW) ...ttt et e et e e e e e e aanneeeann 26
G 2 T 'Y I 1 = 27
B T2 W w19 o o0 0 01 2 0 = U T £ 27
3.2.2 Finding using regular EXpPreSSIONScuuu it ai et e e e eeaaaeeaaanas 28
T2 T = T Yo] < g = L 28
3.2.4 BreaKpoints dialogcoooi e 29
3.2.5 USING Browse COMMANASueie ettt ettt e e e et e e e e e aaanneeeann 31
B.B VIEW MENU o ttttiittiittaiteaa et ae e e ae et e te s e s sannsenarsnsennsennns 32
3.4 PROJECT MENU 1 ttittiittatttieeeaseneeaneeennsenneenneeennsennseneresssenassennees 32
G B N I = o =T Y=Y a1 T 1 33

www.celoxica.com Page 1

DK Design Suite user guide Ce’oflca
.5 BUILD MENU L ittttiittiettaeteaettaeeenaeenesensaneennesenssennsensersassenassennees 33
3.5.1 Selecting a configUrationcooiiiiii ettt eaas 34
3.6 DEBUG MENU ... uuiittttttteaaat e et eteaaaaaa e e e e e aaaaaa e e e e e aaaaaseeeennnnnnns 34
B A 1 1@]IS V= N 35
G I Yo T8 | (o =T o (0, 35
3.7.2 Customize Toolbars... COMMAaNd........cccoiiiii et aanas 36
3.7.3 TOOIS OPLIoNS AIAlOQ .. eeee e e e 36
3.8 WINDOW MENU . .uuttettttaeaeee e et eeeaaaaae e e e e et aaaaaae e e e e e aaaaaeeeeeennnnnn 38
B < 285 VLY T g o Lo Y23 1 =1 o o 38
SO HELP MENU et ittt ettt et ettt et ettt e e et ettt a e e et e e e e e e e e e aennnns 39
3.10 KEYBOARD SHORTCUTS . tittttiettetsaeennesenaseneennesenssensesnsesenssennees 39
4 PROJECT DEVELOPMENT &1ttt ettt ttaae e eeaaa e eeaaas s eeaaas s enaaa e e naas e enaaaeennnnns 43
A PROJECT T PE S i utttttuaaateeeetannaaaaas e e e e aaaaeeeeeennnaaaaeeeeennnnaaannns 43
4.1.1 Creating @ PrOJECTttt ettt et 43
4.2 MANAGING PROJECT FILES . tttuaaaateeeteeaaaaaeeeeeennaaaaeeeeeennnnaaaaens 44
4.2.1 What files are generated for @ project?.......cceooiiiiiii i 44
4.2.2 Adding fileS t0 @ PrOJECT ... ne e 45
4.2.3 MUl PrOJECES ettt ettt e ettt e e et e e e e aanneeeann 46
4.2.4 Linking MUItiple files. ..o e 46
4.2.5 Removing files or folders from a projectooiii i 47
4.2.6 Search paths for project files ..o e e 48
4.3 WORKSPACE AND PROJECT DIRECTORIES . .uuuiiiiettinaaaaaseeennnnnaaaananees 48
4.3.1 Adding an existing project t0 a WOrKSPACEuuuuuiiiiiiiii i aaiaeee e 48
4.4 CONFIGURING A PROJECT 1tttttiaaaaeeeeteaaaaaaee e e e annnaaaaeeeeeennnnaaanes 48
4.4.1 Defining project configuratioNs.oiii i eee s 49
A @] g o] 0] (=)l o]] =03 K= 49
4.5 PROJECT AND FILE DEPENDENCIES ... tuuittttaateteaaaeennaaaeennaaseennaaaeennnn 50
Y I T = o 1= 1= Lo 1= g 1o 1= 50
4.5.2 ProjJeCt depPenUenNCieS. ...ttt 51
4.5.3 EXternal dependeNCIeScunei ittt et e 51
4.6 PROPERTIES DIALOG .t uuutetttttnaaaaaeeeeaannaaaaseeeeaannnnaaaseeeeennnnaaanes 51
4.6.1 General tabh .. .o e ieeieaaiaaaaaa. 51
4.6.2 INPULS Tab ..o e 52
4.6.3 OULPULS A . ..o ettt ettt 52
4.6.4 Dependencies tab ... e 53
4.7 PROJECT AND FILE SETTINGS . .1 ttuteteaaeetnaaseanaaaseenaseennaaseenaaaeennnn 53
4.7.1 Independent settings for files ... e 54
4.7.2 General tab .. .o e ieeiiaiiiaaaaa. 54
4.7.3 DEDUG Tab .. e 56
4.7 .4 PreproCeSSOr tab ... e 56
A.7.5 SYNTNESIS Tab ... e 57
4.7.6 Optimizations 1ab e 59
4.7.7 Chip tab (Project SETUINGS) .. uutei ittt eeeaaas 60
A.7.8 LINKEE 1A oo e 60
4.7.9 Build commands tab (Project settingsS) «..cooeiieiiiiii e e 62

www.celoxica.com Page 2

DK Design Suite user guide Ce'oflca
A.7.10 LIbrary tab ... e 62
5 BUILDING A PROJECT 1 ttttttaaatteeettanaaaaaeeeeaanaaaaaeeeeaennnaaaeseeeennnnsaanns 64
5.1 BUILD PROCESS . .uitttttttaaaateeettteaaaaasseeetanaaaassseeennaaaaasseeennnnnns 64
5.1.1 RUNNING the COMPIIET ... e et e eaaaas 64
5.1.2 Setting up €code fOr debDUQooiii ettt e aaas 65
5.1.3 Building and compiling for debug..... ... 65
5.1.4 Building with library and object filesccooiiiiii e 66
5.1.5 Preparing to build for hardware...........ooooiiiii e 66
5.1.6 Compiling for release oOr target.cooi i 67

LS T A = =T o 1o] s 1= 67
5.2 BUILD COMMANDS IN DK ...t e 72
5.2.1 Simulator compilation command lINESooo i i 73
5.2.2 Generating a standalone executable ... 74
5.2.3 Generating an .0bj file ..o 74
5.2.4 Post-build cOmMmMAaNdS ... s 75
5.3 CUSTOM BUILD COMMANDS ...\tettteaeeaae e e eeeaaaaaee e e e annaaaaaaeeeeennnnnnn 75
5.3.1 Specifying a custom bUild.o 76
5.3.2 Build commands, outputs and dependencCiesooiiiiiiiiiiiiii i aaaaas 76
5.3.3 File and dir€CtOry MacCrOS .. .cooiiie ettt ettt et et e e e e e eaanee e aaaans 77
6 COMMAND LINE COMPILER .t tuuuitttettttnaaaaaseeeeeanaaaasseeeaennnaaaasseennnnnnnns 80
6.1 SUMMARY OF COMMAND LINE OPTIONS . ..cutttettetenaeennaeenseenaeennaennnns 80
6.2 COMPILER TARGET OPTIONS . .. uttttttaaeaaeeeetanaaaaaeeeeeannaaaaaeeeeennnnnnn 82
6.3 PASS OPTIONS TO PREPROCESSOR .. uuuuitteetttaaaaaaeeeeeannnaaaaaeeeennnnnnnn 83
6.4 OPTIMIZER OPTIONS ... ttttteitteeetteaaaaaee e e e aanaaaaaeeeeeannnaaaaseeeennnnnnn 84
6.5 COMPILER DEBUGGING OPTIONS .. .ttttttttteeeaeeaeaeaaaaaaaaaaaaaaaaaaaaaaaaans 85
6.5.1 Targeting the simMUIAator. ..o et e eei e eaaas 85
6.5.2 Detecting simultaneous access to functions, memory and channels 86
6.6 SIMULATION COMPILATION CONTROL OPTIONS . .uuiiiteetteeiaaanseenenannnn 86
6.6.1 Pass options to command liNe........c.ooiiiiiiii i e 86
6.6.2 Pass options to backend compiler 87
6.7 ENVIRONMENT VARIABLES ..t iitttttttiaaaaeeeettnaaaaaesseeennaaaaaeeeeennnnnnn 88
7 SIMULATION AND DEBUGGING ..uuuttettteiaaaaeeeeteaaaaaaaeeeeennnnaaaaaeeeennnnnnnn 89
7.1 USING THE SIMULATOR &ttt e tettaaaaaaee e e aaanaaaaaseeeennnaaaaseeeennnnnnns 89
7.1.1 Starting debug and simulation o 89
7.1.2 Debug symbols in the editor Windowcooiiiiiiiiiiii i e 90
0 R 1= =T] T = T o Yo 90
7.1.4 Selecting a thread 1o fOllOW i 90
7.1.5 Following function calls in the Call Stack Windowcccoiiiiiiiiiiiiiiinniin, 91
7.1.6 Examining variables ... 91
7.2 USING THE DEBUGGER ..t tuiiistetttteaaaaseeeteannaaaassseeeennaaaasseeennnnnnns 92
7.2.1 Generating debug information............ooiiiii i e 92
7.2.2 Debug project configuIration...... ...t 92
7.2.3 Stepping through COAE. e 93

www.celoxica.com Page 3

DK Design Suite user guide Ce'oflca
7.2.4 Advancing through COde........ooiiiiii e et e e s 94
7.2.5 Arrow behaviour during step and advancCec.ccovviiiiiiieiiiiiiii it 95
7.2.6 USING BreakpOintso s 96

8 OPTIMIZING CODE . uutitttteaeaa e ettt aaa e ae e e e e e aae e e e e e aaaeeeeeeennnaaaaes 99

8.1 LOGIC ESTIMATOR . 1ttttttiaaateeettanaaaaae e e e eaanaaaaaeeeeeannnaaaaeeeennnnnnnn 99
8.1.1 Logic area and depth SUMMAIY ... e eaaaas 99
8.1.2 Area and delay estimation example ... e 100
8.1.3 INformation ON l0QIC @@ot 101
8.1.4 Information on combinatorial paths and delayo, 102

8.2 OPTIMIZING CODE EXAMPLEutttaaaaeeeettaaaaaaaeeeennaaaaaeeeeeennnnnnn 103
8.2.1 Optimizing code example: original programcocoviiiiiiiiiiiiiiiiiiaieenns 104
8.2.2 Building the optimizing code eXxamplecooiiiiiii i 104
8.2.3 Optimizing code example: stage L.....cooiiiiiiiiiiii e e s 105
8.2.4 Optimizing code example: Stage 2. e 106

O TARGETING HARDW ARE ..t ttttettaeeeneeeneenneennesenssensesnnerenassenssenserennsens 108

9.1 TARGETING A PARTICULAR SYNTHESIS TOOL .uuuuiteeitinaaaaaeeeeeennnnnannn 108

.2 ALU MAPPING .1ttt et tttteteeaa et e et aa e e e et aaaaaae e e e e naaaaeeeeennnnnnn 108

9.3 TECHNOLOGY MAPPING .+« ttttttettteaaaasseetennaaaasseseennnnaaaaaseeennnnnnnn 109

O 4 RETIMING .uttiitttiettaeeeaeeeaaeeaaeeaeeeneseneennesensseneenereassenssensesenns 110
9.4.1 HOW retiming WOFKSttt ettt e et eaaeens 111

9.5 OPTIMIZING ARITHMETIC HARDWARE IN ACTEL DEVICEScevvvvunnnnn.. 127

9.6 TARGETING HARDWARE VIAEDIF ... 127
9.6.1 EDIF block @and Net NAMIESt et aaeeens 127
9.6.2 Specifying wire name format in EDIF ..o e 130
9.6.3 Setting up place and route tOO0IS.o e 130
9.6.4 Preparing MaxPlus Il to to compile Handel-C EDIFcooiiiiiiiiiiiinnnna.. 131
9.6.5 Preparing Quartus to compile Handel-C EDIF.........ooiiiiiiiiiiiiiiii i 131
9.6.6 Importing timing constraint files into Actel Designer............oooooiiiiiiinan.. 133

9.7 TARGETING HARDWARE VIAVHDL ... 133
O.7.1 VHDL fil@ STrUCTUIE ... e ettt etee e neees 134
9.7.2 Naming of VHDL files and entities.... ...t i 135
9.7.3 Mapping Handel-C functions to VHDL entitieScooiiiiiiiiiiiiiie i 136

9.8 TARGETING HARDWARE VIA VERILOG .. .tttttiiaiaeeeeeenaaaaaaeaeeennnnnanns 138
9.8.1 Verilog file StrUCTUNe e 138
9.8.2 Naming of Verilog files and modulesccooiiiiiiiiiii e 140
9.8.3 Mapping Handel-C functions to Verilog modules..........cccvviiiiiiiiiiiiinnnnn.. 141

1O TUTORIAL EXAMPLES . uuttittteetaaesaneenneseaseeneennesenssenssensesssssenssennees 143

10.1 EXAMPLE 1: ACCUMULATOR EXAMPLE ... uuuitteetttaaaaaaeeeeeennaaaaaaannes 143
10.1.1 Compiling and simulating example 1ccooiiiiiiiiii e eeaes 143

10.2 EXAMPLE 2: PIPELINED MULTIPLIER EXAMPLE tuuuiiiiiieeiieniaaanaaanns 144
10.2.1 Example 2: Index array test code detailScovviiiiiiiiiiiiiii e 144
10.2.2 Compiling and simulating example 2 i 145

10.3 EXAMPLE 3: QUEUE EXAMPLE . ..uutitiiit et iaa e eae e eaeee e eaeeeeaaaeennnn 145

www.celoxica.com Page 4

DK Design Suite user guide Ce'oflca
10.3.1 Example 3: detailed explanation..........c.cooiiiiiiiii i 146
10.3.2 Compiling and simulating example 3o 146

10.4 EXAMPLE 4: CLIENTS / SERVER EXAMPLE ..cvviiiiiiiiiieeeeieaaaannnann, 147
10.4.1 Example 4: code detailSooiiiiiiii i e 148
10.4.2 Compiling and simulating example 4ooiiiiiiiiiii e e 149

10.5 EXAMPLE 5: MICROPROCESSOR EXAMPLEttiitiiiaiaseeeenennaaanaannes 149
10.5.1 Example 5: microprocessor desCriptioN.......cc.viiiiiiii i eiii e eeaans 150
10.5.2 Compiling and simulating example 5coooiiiiiiiiii e 150

10.6 EXAMPLE 6: CLOCK MANAGER EXAMPLE .. .uuitettttaiaaaeeeeennnnaaaaaaaenes 151
10.6.1 Example 6: description of program et 151
10.6.2 Compiling @XamPIe 6 ...ttt e, 153

11 PORTING C TO HANDEL-C ..ttt ettt reee e e e e eeaaaaa e aeeeaes 154

11.1 STAGES IN PORTING C TO HANDEL-C ..ttt i i eeeeieeeeeeeeeenes 154
11.1.1 Deciding how the software maps to the hardwarecooiiiiiiiiiin.. 154
11.1.2 Converting the program from C to Handel-C........... .ot 154
11.1.3 Using the extra operators available in Handel-C..............ccooiiiiiiiiiiint, 154
11.1.4 Adding fine grain paralleliSmcooiiiiiiii e 155
11.1.5 Adding hardware iNterfaceso i 155

11.2 PORTING C TO HANDEL-C: EDGE DETECTOR EXAMPLEcvvviiiernnnnn.. 155
11.2.1 The original PrOgramttt et et e e et eaeannee e eaanns 155
11.2.2 Stage 1: First pass conversion to Handel-Cot 156
11.2.3 Stage 2: First optimizations of the Handel-C program...............cccvviiinnen. 157
11.2.4 Stage 3: Adding fine grain parallelismcccooiiiiiiiii i 158
11.2.5 Stage 4: Further fine grain parallelismo, 161
11.2.6 Stage 5: Adding hardware interfaces........coooviiiiiiiiii i 162

12 INTEGRATING C/Z CHF FILES .ttt eete e e ee e e e eeeeaanaeeeeann 166

12.1 CALLING C/C++ FUNCTIONS FROM HANDEL-C......cccvviviiiiiinnnn.. 166

12.2 COMPILING AND LINKING INA C/ZCH FILE...iiiiiiiiiiieiiiiiiaaanaaans 167
12.2.1 Build commands to compile C/C++ files ..o 167

12.3 CALLING HANDEL-C FUNCTIONS FROM C/C++........cciiiiiiiiiinn... 168
12.3.1 Calling Handel-C functions from C/C++: examplecoooiiiiiiiiiiniiiin.. 168
12.3.2 Calling Handel-C functions from C++: tutorialc.coiiiiiiiiiiiiiiiiias 169

12.4 USING EXTERN C: BITONIC SORT EXAMPLE . .uiiiiitiiiraiieiieniaeenneennn 170
12.4.1 Compiling and simulating the bitonic sort example ...t 170

12.5 PORTING C++ TO HANDEL-C: HDLC EXAMPLEciviieiiiiiiiiaaaaanns 171
12.5.1 Description of the HDLC eXample.c.ooiiiiii i 171
12.5.2 Compiling and simulating the HDLC example...... ...t 172

13 INTEGRATING HANDEL-C WITH VHDL, VERILOG AND EDIF 175

13.1 RESET ON CONFIGURATION Lt uuuttttttnaaasseeeeannnaaaasaeeeennnnaaaaeeeennns 175

13.2 INTEGRATING WITH VHDL BLOCKS ..t uiiiiiii e eieiieiee e eeeeeiiaaaaaeees 176
13.2.1 Linking to the Handel-C VHDL libraryccoooiiiiiiii i 176
13.2.2 Writing Handel-C code to integrate with VHDL code.............ocoiiiiiiiiinines 176
13.2.3 Example: VHDL within a Handel-C project....... ...t 178

www.celoxica.com Page 5

DK Design Suite user guide Ce'oflca
13.2.4 Example: Handel-C in @ VHDL ProJectooiiiiiiiiii i i eeeeeeeaes 179
13.2.5 Synthesizing Handel-C with external VHDL..........ccoiiiiiiiiiiiiiiiiiiiieas 181
13.2.6 Connecting Handel-C EDIF t0 VHDL ... 181

13.3 INTEGRATING WITH VERILOG BLOCKS ...uitiiieiieerarrnneennernnaaeenneennn 181
13.3.1 Linking to the Handel-C Verilog libraryccoooiiiiiiiiiii i eeeas 182
13.3.2 Writing Handel-C code to integrate with Verilog code.............ooiiiiiiiiiat. 182
13.3.3 Example: Verilog in a Handel-C projectcooviiiiiiiiiiiiiii i 183
13.3.4 Example: Handel-C in a Verilog Projectccoviiiiiiiiiii i iiiiaieeeeaes 185
13.3.5 Synthesizing Handel-C with external Verilog....... ..., 186
13.3.6 Connecting Handel-C EDIF to Verilogcociiiiiiiiii i 187

13.4 INTEGRATING WITH EDIF BLOCKS ...t eeeeieeeaaaees 187
13.4.1 Connecting Handel-C EDIF to external EDIFot 187
13.4.2 Writing Handel-C code to integrate with external EDIF..................c.oo.ael 188
13.4.3 Example: Handel-C in an EDIF Project.........coooiiiiiii i 189
13.4.4 Example: EDIF component in a Handel-C projectooooiiiiiiiiiiiiian. 191

13.5 EXAMPLES: INTEGRATING HANDEL-C wiITH VHDL, VERILOG AND EDIF193
13.5.1 Integration examples: rUNNING . .coui e et e e eaanes 193

13.6 EXAMPLES OF INTERFACING TO VHDL ... 194
13.6.1 Combinational circuit example: VHDLcoiiiiiiii i 194
13.6.2 Register bank example: VHDL ... e e 195
13.6.3 FIR filter example files: VHDL ... i 196

13.7 EXAMPLES OF INTERFACING TO VERILOG....uiitiieetierreeennernnaeenneennn 198
13.7.1 Combinational circuit example: Verilogccooeiiiiiiiii e 199
13.7.2 Register bank example: Verilog 200
13.7.3 FIR filter example files: Verilogcooiiiiiiii e 200

13.8 EXAMPLE OF INTERFACING TOEDIF ... 202
13.8.1 FIR filter example files: EDIF ... e 203

0 2 O o T L o I 205

14.1 BMPZ2RAW UTILITY tttttttiieae e e e e teaaaaae e e e e e naaaaaeeeeeannaaaaaaeeanes 205
14.1.1 RGB exampple file. ... s 206
14.1.2 bmp2raw RGBFile eXample ..o e et 207
14.1.3 bmp2raw RGB description file formato 207

14.2 RAWZBMP UTELITY itttttttaaaaeeeettnaaaaaaseeeeannaaaaseeeennnnaaaaneeanes 207
14.2.1 RGBFile worked example e 208
14.2.2 raw2bmp RGBFile format.........ccooiiiiii et 209
14.2.3 raw2bmp RGBFile eXample ... i 210

15 TROUBLESHOOTING &t uuttttaatetaaaseaaaaeeanaaeennaseennaeeennasennnaasennaanees 211

15.1 TROUBLESHOOTING .1uuutttuuaseeeetenanaaaseeeeennnnaaaaeseeennnnaaaaaeenenns 211
15.1.2 Updating t0 DK 2 ..ttt ettt et e 211

15.2 TROUBLESHOOTING: MULTIPLE CLOCK DOMAINSiviiirieneninrennennns 212

15.3 TROUBLESHOOTING: FIFOS ... eeees 212

15 .4 ERROR MESSAGES ..t ittt ettt et e et e ae e ae e et e et e eeaasaeeneeneenenns 213
15.4.1 DK enVirONmMeENT ErrOr MESSA0ES . uuuuuee ettt e et aaaaaee e e aaaae e e e aaaanee e e aaanns 219

15.5 WARNING MESSAGES ..iuuttuttiettetentennesenseenssenesenssenseensereansens 220

www.celoxica.com Page 6

DK Design Suite user guide

Celoxica

16 INDEX

www.celoxica.com Page 7

DK Design Suite user guide

Celoxica

Conventions

A number of conventions are used in this document. These conventions are detailed
below.

Warning Message. These messages warn you that actions may damage your hardware.

Handy Note. These messages draw your attention to crucial pieces of information.

Hexadecimal numbers will appear throughout this document. The convention used is
that of prefixing the number with '0x' in common with standard C syntax.

Sections of code or commands that you must type are given in typewriter font like this:
void main();

Information about a type of object you must specify is given in italics like this:
copy SourceFileName DestinationFileName

Optional elements are enclosed in square brackets like this:
struct [type_Name]

Curly brackets around an element show that it is optional but it may be repeated any

number of times.
string ::= "{character}"

www.celoxica.com

DK Design Suite user guide

Celoxica

Assumptions & Omissions

This manual assumes that you:

e have used Handel-C or have the Handel-C Language Reference Manual
e are familiar with common programming terms (e.g. functions)
e are familiar with MS Windows

This manual does not include:

e instruction in VHDL or Verilog
e instruction in the use of place and route tools
e tutorial example programs. These are provided in the Handel-C User Manual

www.celoxica.com

DK Design Suite user guide

Celoxica

1 Getting started with DK

1.1 Starting DK

To start the DK, do one of the following:

e Select Start=Programs=DK Design Suite=DK
e Double-click on an existing DK workspace file (files with the extension _hw) E

e Double-click the DK icon @ on the desktop

1.2 Creating a new file

1. Select File=New, and click the Source File tab.

2. Select the type of file you want to create in the left-hand pane. (Note that the
default is a text file.)

3. Check the Addto project box if you want to add the file to an existing project.
Select one of the projects in your current workspace from the drop-down box.

4. Type the name of the file in the Filename box. You do not need to add a file
extension if you have set the file type.

5. Set the location (the directory path where the file is stored), by typing the
path name in the box, or by selecting a directory by clicking the ... button.

6. Press OK.
7. The code editor window opens.

1.3 Writing source code

You write Handel-C source code in the source code editor. Code is indented at the same
level as the line above it and is syntax highlighted.

Having a file open in the source code editor does not mean that it is part of your project.
The only files that will be compiled and built are those that you have added to your
project.

1.4 Build configuration types

There are several default types of configuration that you can select from to build your
application:

~

www.celoxica.com Page 10

DK Design Suite user guide

Celoxica

e Debug (default)

e Release

e Generic (This option is only available for library projects)
e VHDL (This option is not available in Nexus PDK.)

e Verilog (This option is not available in Nexus PDK.)

e EDIF (This option is not available in Nexus PDK.)

Debug mode is used to build a configuration that can be simulated and debugged on the
PC. In debug mode, you can view the contents of registers and step through the
program’s source code.

Release mode creates compiled code that has no debug messages and can be used in
another program. Release mode can also be used for high-speed simulation.

Generic mode is used to create Handel-C intellectual property (libraries) which are not
targeted at a particular output format. It creates compiled code that has no debug
messages and can be used in another program. Generic mode can be linked for
simulation, EDIF 2.0.0, Verilog IEEE Std 1364-1995 or VHDL 1987.

In EDIF mode, you get a list of gates, ready to be placed and routed on a device.

In VHDL mode, you get a collection of VHDL files, which can be simulated using any
VHDL simulator (such as ModelSim) and synthesized and placed and routed using the
appropriate RTL tools.

In Verilog mode, you get a collection of Verilog files, which can be simulated using any
Verilog simulator (such as ModelSim) and synthesized and placed and routed using the
appropriate RTL tools.

You can also define your own configuration types to store a particular set of project
settings.

1.5 Project development sequence

The normal development sequence for a single-chip project is:

1. Create a new project.

Configure the project.

Add empty source code files to the project.
Create source code.

Link to any required libraries.

Set up the files for debug.

Compile the project for debug.

Use the debugger and simulator.

© 0O NGO~ W

Optimize the project.

www.celoxica.com Page 11

DK Design Suite user guide

Celoxica

10. Compile the project for the target chip. (This step is not available in Nexus
PDK.)

11. Export the target file to a place and route tool.

12.Place and route. There is no information on placing and routing within the DK
documentation. Consult your place and route tool’s documentation.

www.celoxica.com Page 12

DK Design Suite user guide

Celoxica

2 Windows and Toolbars

The DK environment is a standard Windows development environment with dockable
windows and customizable toolbars. The environment is in four main parts.

Workspace window The area where you organize each project: the files you
need, plus information about the target. When you start
DK, the default position of the window is on the left.

Code editor window Where you create and edit Handel-C source files. When
you create or open a file, the default position of the
window is on the right.

Output window The area that displays error messages and warnings when
you compile a file. The default position of the window is at
the bottom of the screen. The output window has tabs for
build messages and debug messages.

Debug windows Windows which show information when you simulate the
operation of a compiled program. The View=Debug Windows
command determines which windows are displayed.

The simulation steps the program through clock cycles,
and allows you to look at the contents of any variables
that are in scope. These are displayed in the Variables
window.

You can select variables to display in the debug Watch
window. The default position of the Watch window is the
bottom left-hand corner of the screen.

The call stack (the route by which you have called a
function) is displayed in the Call Stack window.

You can see clock cycles and current executing threads in
the Clocks/Threads window.

2.1 Workspace window

The Workspace window contains workspaces and projects.

A workspace is allows you to organize the files that you need for each project. You would
generally use one workspace per system (a system describes the hardware configuration
that you are targeting).

A project consists of everything you need to create one or more netlist files ready to be
placed and routed on a device, together with the project settings. Project settings
provide information about where the files for the project are stored, the target chip for
the project, how the compilation will work, and optimization requirements.

The Workspace window has two views:

~

www.celoxica.com Page 13

DK Design Suite user guide

Celoxica

File view
Symbol view

2.1.1 File view

File view shows the workspace, its projects, and their source files and folders. The
current project name is in bold.

File view shows the structure of files in the project, not how they are stored on disk. It
allows you to set up dependencies (what files are needed for this project, and what files
or projects they depend upon) and to manage your project.

Double-click on a source file name to open the file in the code editor. Double-
clicking on anything else expands or contracts that branch of the workspace
tree.

Right-click on a file name or directory to display a menu of commonly used
options.

Context menu - File View window

The context menus in the File View window are accessed by right-clicking on a file or

project.

Context menu for files

Item

Open
Compile
Delete
Settings
Properties

Description

Opens file in Code Editor window

Compiles file

Removes file from project

Opens Project Settings dialog. Allows you to specify file settings.

Opens Properties dialog. Displays information and allows you to change the
language specified for the file.

www.celoxica.com Page 14

DK Design Suite user guide ’ —
Celoxica

Context menu for projects

Item Description

Build Builds the selected project

Clean Deletes all the files that are created by building the project (doesn't affect

source files)

New Folder Allows you to specify the name of a new folder, and the extensions of the
files associated with it

Addfilesto Allows you to add files to the project

Folder

Setas Active Sets selected project to be the active one
Project

Settings Opens Project Settings dialog

Properties Opens Properties dialog

File view icons

DK workspace (.hw file)

DK system project (.hp file)
DK board project (.hp file)

DK chip project (-hp file)

DK core project (.hp file)
Library project (-hp file)
Handel-C source file (.hcc file)
Handel-C header file (-hch file)
C++ source file (.cpp file)
ANSI-C source file (.c file)
C/C++ header file (-h file)
Text file (-txt file)

Folder

Folder (open)

HeFPFPFPEReD 28 [F]

www.celoxica.com Page 15

DK Design Suite user guide

Celoxica

2.1.2 Symbol view

A symbol is a logical or architectural construct that you define such as a function,
variable, macro, typedef or enum. Symbol view allows you to see the logical content of a
project.

e To create the symbol view, build the project with the option Save browse info (-b)
enabled in the project settings (Linker tab, or Library tab for a library project).
This option is set by default in the Debug configuration.

e To see the symbol view, select the Symbol View tab in the Workspace window.
Symbol view shows a tree of icons representing the logical and architectural components.
Each icon is identified by its definition and use (references). External symbols (external

variables and function names) appear in alphabetical order. Local symbols appear in
alphabetical order within the function or procedure where they are defined.

Double-click on a symbol to expand it, or (if it is not expandable) to open the relevant
source code file with the appropriate line tagged.

Symbol view icons

Icon Meaning

Shared function, procedure or expression
In-line function or macro

Variable
Memory (RAM, ROM, WOM or MPRAM)

Channel (chan, chanin or chanout)
External interface
Semaphore (sema)

Signal

v XA R P e E

Stacked position containing the related object (e.g. recursive macro)

- Position in the file containing the definition of the object

2.2 Code editor window

The code editor is a simple editor that resides in its own window. If you right-click in the
code editor window, you get a context-sensitive menu.

www.celoxica.com Page 16

DK Design Suite user guide

Celoxica

2.2.1 Code editor icons

L AELEE

Tgeoe

Current active point

Other statements executed in current thread on current clock cycle
Active point in different thread

Position of current error/browse symbol

Enabled breakpoint(s) on this line

Disabled breakpoint(s) on this line

Enabled and disabled breakpoint(s) on this line

Bookmark on this line

2.2.2 Context menu - code editor window

Item
Undo

Redo

Cut

Copy

Paste

Select All

Toggle Bookmark

Insert Breakpoint

Description

Removes the last word or line break that you typed
Restores a word or line break (after using Undo)
Cuts selected text

Copies selected text

Pastes text copied from elsewhere

Selects everything in the Code editor window
Allows you turn bookmarks on and off

Allows you to specify which lines of code the simulator will pause at

2.2.3 Syntax colour codes

The syntax in a displayed file is colour coded.

The default colour codes are:

www.celoxica.com Page 17

DK Design Suite user guide

Celoxica

green: comments

blue: Handel-C and supported C/C++ keywords
red: unsupported C/C++ keywords

brown: number

brown: string
purple: operator

You can change the colour codes by selecting the Format tab from the Tools>Options dialog
box.

2.3 Output window icons

Information & User assert statement
Warning about your program

Error in your program E Position stack

@ B> @

Internal error in the compiler - Position

2.4 Debugger interface

The debugger interface consists of the debug windows and menu commands, and their
associated buttons. When you start a simulation, the Debug menu appears. You use the
Debug menu commands to control the simulation.

Debug information is presented in the following windows. To open or close windows, use
the following shortcuts or use the View=Debug Windows menu options.

www.celoxica.com Page 18

DK Design Suite user guide

Celoxica

Window Shortcut Function

Code editor Appears The editor window for the source code that you are
by default debugging. Its title will be the file name. The code is marked
by debug symbols to show the current execution points and
breakpoints.

Call Stack Alt+7 E] Shows the calling path to the current function.

Clocks/Threa @ Identifies all current threads, and allows you to select one to
Alt+5 . . .
ds follow. Also identifies each clock in use, and allows you to
view its definition in the code.

Variables Alt+4 Shows the variables used in the latest statements in the
current thread, and those local to the current macro or
function.

Watch Showing the contents of variables that you select. You select

the variables to show on four separate tabs

2.4.1 Debug buttons and icons

Run to cursor Alt+3 Show/hide the Watch window

Advance [Alt+0 Show/hide the Workspace window

Buttons

E Restart B Stop debugging

(i Break

il-i Step into Alt+7 Show/hide the Call Stack window

E Step over Alt+5 Show/hide the Clock/Threads window
||E’ Step out Alt+4 Show/hide the Variables window

alh

~d

Icons

ﬁ:g Clock in Clocks/Threads window

@ Thread in Clocks/Threads window

www.celoxica.com Page 19

DK Design Suite user guide

Celoxica

2.4.2 Call Stack window

During debug the Call Stack window lists the functions and macro procedures called on the
way to the current function. The current function or macro procedure appears at the top
of the list, followed by those that have not yet completed. You can open the Call Stack
window by selecting View=Debug Windows>Call Stack or clicking the Call Stack window button

Rl

2.4.3 Clocks/Threads window

The Clocks/Threads window shows a tree view of the simulators, clocks and threads in
operation during debug. Entries for the current clock and thread appear in bold type.

e To open the Clocks/Threads window, select View=Debug windows=Clocks/Threads, or
press Alt + 5.

Details are shown in three columns.

ClockiThread Identifies each clock and the threads that are executing on it.

{Eﬂ Clock entry is in the form clockno line
clockno is the number used by the simulator to identify the clock
line is the source file name and line where the clock is defined.

To view the definition, right-click on the clock icon and select Show Definition
from the shortcut menu.

@ Thread entry is in the form threadno context
threadno is the number used by the simulator to identify the thread
context indicates the source code context in which the thread executes.

Right-click on the thread icon to display a menu with two options:
Show Location to view the source code for the thread
Follow Thread to make the selected thread the current thread

Cycles Shows the number of cycles executed for each clock.
Location Shows the source code file name and line number currently executing in the
thread.

www.celoxica.com Page 20

DK Design Suite user guide

Celoxica

Threads
Clock/Thread | Cycles | Location
1]
prnducer(} main. hoo In 124 main.hocz Ln 95
‘ main{), main.hcc Ln 120 main _hce Lo 125
El E:} 1 {queue hco Ln 800 0
----- @ 5: mainf()., gueue.hcc In 97 queune . hoo In 117
----- ¢® £ main()., gusus.hcc Ln 97 queus. hco In 117
----- ¢® 7. main{), gueus.hcc Ln 97 gqueus. hoo In 117
----- ¢® 8. main{). gueus.hcc In 97 queues. hco In 117

SAMPLE CLOCKS/ THREADS WINDOW

2.4.4 Variables window

The Variables window shows the variables that are important in the program's current
context. When their values change, the colour changes from black to red. Only the last
value to change will be shown in red. You can open the Variables window by selecting

View=Debug Windows=>Variables or clicking the Variables window button

You can change the base that variables are displayed in by right-clicking the Variables
window and selecting a new base. Binary format variables are displayed with leading
zeroes. You can also change the default base for variables in the Variables window:
select Tools>Options>Debug, and set the required base in the Base for numbers box.

The default maximum number of elements displayed in the Variables window is 16. To
change this, select Tools>Options>Debug, and change the number in the Maximum number of
visible elements box. If you increase the number of elements, the simulation will be slower.

The Variables window has two tabs, Auto and Locals.

e The Auto tab shows variables that have been automatically selected. These are
variables used in the current statement and in the previous statement. (If you
have just swapped threads, the "previous statement” will be the last one you
looked at in the other thread.)

Variables that have changed since the previous step are shown in red. The Auto
tab also displays return values when you come out of or step over a function.
If you switch threads, you will see variables from the previous step in the
other thread.

e The Locals tab shows the variables that are in scope in the current function or
macro.

www.celoxica.com Page 21

DK Design Suite user guide

Celoxica

2.4.5 Watch window

The Watch window has four tabs:

il Mame | W alue I

req 0

AT o virateht £ watche J Wiatchs i Wiatchd /

Each goes to a different Watch window. You can select variables to be displayed in each
window, and look at their values at any breakpoint or as you step through the program.

The default maximum number of elements displayed in the Watch window is 16. To
change this, select Tools>0ptions>Debug, and change the number in the Maximum number of
visible elements box. If you increase the number of elements, the simulation will be slower.

You can add a variable to the Watch window by typing its name.
You can delete a variable from the Watch window by selecting its name and deleting it.

You can change the base that variables are displayed in by right-clicking the Watch
window and selecting a new base. Binary format variables are displayed with leading
zeroes. You can also change the default base for variables in the Watch window: select
Tools=>0Options>Debug, and set the required base in the Base for numbers box.

The Watch window has an expression evaluator. If you type in an expression, it will be
evaluated and the result will be displayed. It cannot display expressions containing:
function calls, let, select, trysema, strings, &, assert.

2.5 Toolbars

When you start DK, toolbars appear under the menu bar.

Standard toolbar JJ [|§E B & | 9 T |
Build toolbar LR VI YIS Y
Browse toolbar HJ A B8 oo ‘
Debug toolbar JJ M F M |ﬁ|-l & ik 2

www.celoxica.com Page 22

DK Design Suite user guide

Celoxica

Edit toolbar H'Q' -pg_ QQ_ @ | @

2.5.1 Standard toolbar buttons

The buttons on the standard toolbar give a subset of options from the File, Edit and View
menus.

2.5.2 Status bar

The status bar is visible at the bottom of the DK window. It displays:

¢ Information about items when the mouse is over them

e The current line and column number within the current code editor window
e Status and progress messages

e Keyboard states

e CAP : Caps lock on
e NUM : Num lock on
e SCRL : Scroll lock on
e OVR : Overwrite on (i.e. insert key pressed)

You can toggle its display by selecting View=Status bar.

2.6 Customizing the DK GUI

2.6.1 Customizing windows

The DK user interface has standard scrollable windows.
You can customize:

e The position and size of the workspace, code editor, output and debug
windows. The settings will affect all DK projects.

e How document windows are laid out (this is specific to each workspace)
Re-sizing windows

Document windows are movable within the DK window. You can resize them and drag
them about.

~

www.celoxica.com Page 23

DK Design Suite user guide

Celoxica

Docking windows can either be docked at one of the window margins, or can float above
the other windows.

e To float a docked window, double-click its border.

e To dock a floating window, either double-click its border, or drag its title bar to
a docking position.

Splitting windows
You can split a text window in two ways:

e Use the Split command on the Window menu

e Drag the split box (shown in the graphic below). It is the small box
immediately above the vertical scroll bar in the text window:

j?

Full screen display

The Full Screen command on the View menu displays the code editor pane at maximum size.
The normal menu bars and toolbars are not visible. To return to a normal view, click the

Close Full Screen button ﬂ.

2.6.2 Customizing toolbars

The Command tab in the Customize dialog allows you to add or remove buttons on any
toolbar. The right-hand pane displays the buttons available.

Adding or removing buttons on a toolbar

Select Tools>Customize Toolbars, and then select the Toolbars tab.

To add a button to a toolbar, select the button from the Commands right-hand pane and
drag it to the toolbar.

To remove a button from a toolbar, drag the button off the toolbar.

Restoring a toolbar

To reset a toolbar to its previous state, select Tools>Customize Toolbars and then select the
Toolbars tab. Select the toolbar name in the Toolbars list and click the Reset button.

Placing toolbars

The toolbars in DK are dockable. They can be docked at one of the edges of the DK
window, or they can float.

~

www.celoxica.com Page 24

DK Design Suite user guide

Celoxica

e You can change a toolbar from docked to floating and back by double clicking
on it.

e You can move a toolbar by dragging the title bar or the double bar.

Changing toolbar appearance

The Toolbars tab in the Customize dialog allows you to change the display of toolbars.
Check a toolbar in the toolbar pane to display it, uncheck it to hide it.

Show Tooltips Check this to popup the purpose of a button when your mouse cursor is
over it

Cool Look Check this to make the buttons appear two-dimensional
Large Buttons Check this to increase the button size

2.6.3 Customizing menus

The Command tab in the Customize dialog allows you to add buttons to the toolbar and
menus to the menu bar. The right-hand pane displays the buttons and menu commands
available.

Select Tools>Customize Toolbars, and then select the Command tab.

To add a menu to the menu bar:
1. From the Categories list select Menu.

2. Select the menu name from the right-hand list and drag it to the menu bar.

If you drag a menu name to a toolbar, it appears as a button. If you drag it to an empty
area, it appears as a new floating window.

To remove a menu from the menu bar, drag the menu name off the menu bar.

www.celoxica.com Page 25

DK Design Suite user guide

Celoxica

3 Menus and commands

3.1 File menu

Command Shortc Function
ut
m New... Ctrl+N Display the New dialog to create:
e A project
o Afile

e A workspace

'm Open... Ctrl+O Display the File Open dialog
ﬂ Save Ctrl+S Save the active document
ﬁ Print Ctrl+P Print the active document
Save As... Save the active document under a new name
Save All Saves all active documents.
Page Setup Set up for printing
Open Display the Workspace Open dialog
Workspace
Close Close the current workspace
Workspace
Save Save the current workspace
Workspace
Recent Files> List of recently used files. Select one to open it.
Recent List of recently used workspaces. Select one to open it.
Workspaces>
Exit Quit DK

3.1.1 New dialog (File=New)

The New dialog allows you to create

e new files
e new projects
e new workspaces

www.celoxica.com Page 26

DK Design Suite user guide

Celoxica

3.2 Edit menu

Command
H Undo
c Redo
'}E Cut
Copy
t::, Paste
Delete

Eq Find

r:'i:g Find in files...

Replace

Bookmarks>

Breakpoints...

Browse>

Shortcut
Ctrl+Z

Ctrl+Y
Ctrl+X

Ctrl+C

Ctrl+V

Del
Ctrl+F

Ctrl+H

Alt+F9

3.2.1 Find commands

Function

Reverse a recent change to the active document or to
the workspace

Reverse a recent undo

Copy the current selection to the clipboard and delete
it

Copy the current selection to the clipboard

Copy the contents of the clipboard to the current
selection

Delete the current selection

Find a string or regular expression in the current file.

Use F3 to Find next occurrence, Shift F3 to find
previous occurrence.

Find a string or regular expression in selected files

Replace one string or regular expression with another
in current file

Set, remove or move through bookmarks in the
document

Display the project’s breakpoints dialog box

Find definitions and references for variables or other
symbols in the document

DK has simple Find and Replace commands that allow you to search for text in the current
file, and the Find in Files command, which allows you to search for a string in all the files in
a directory. The shortcut F3 finds the next occurrence, and Shift F3 finds the previous

occurrence.

The output from Find in Files can be sent to two different window panes, allowing you to
view the results of two searches. To choose which pane is selected, check or uncheck the
Output to pane 2 box in the Find in Files dialog.

These searches work line by line. Therefore you cannot match text that spans more than

one line.

You can also search using regular expressions. To do this, check Regular expression in the
Find or Find in Files dialog box.

~

www.celoxica.com

Page 27

DK Design Suite user guide

Celoxica

3.2.2 Finding using regular expressions

You can search files for text by using regular expressions. To do this, check Regular
expression in the Find or Find in Files dialog box. You can use any of the expressions listed
below.

Regular Description

expression

) The characters or expressions between the parentheses.
(Period.) Any single character.

Start of line.

$ End of line.

\t Tab character.

xly A match for either x or y. For example, a(team|class) will match either
ateam or aclass.

X* Zero, one or many copies of x. For example, ba*c matches bac, baac,
baaac and bc.

x? None or one x. For example, ba?c matches bac or bc.

X+ At least one or more of x. For example, ba+c matches bac, baac, baaac,
but not bc.

[xyz] Matches one character from the set in the brackets. Use a dash (-) to

[x-y] include all characters in a range; for example, [_A-Za-z] matches an

underscore or any letter, and [_A-Za-z][_A-Za-z0-9]* matches an
alphanumeric string that can include underscores. Use [xyz-] or [-xyz] if
you want to include a dash in the set. If you need a] in the set use []

xyz].
["xyz] Matches one character that is not in the brackets. For example, x["0-9]
matches xa, but not x0 or x2.

\X Matches the character x, even if x is one of the characters "\$[].*+?
listed above. For example, ~pig matches pig at the start of a line, but
\"pig matches the string “pig anywhere on a line.

3.2.3 Bookmarks

The Bookmarks submenu in the Edit menu allows you to set and clear bookmarks within
files.

Once you have set one or more bookmarks in a file, you can move through the
bookmarks by selecting Next Bookmark (F2) or Previous Bookmark (Shift F2).

~

www.celoxica.com Page 28

DK Design Suite user guide

Celoxica

Setting bookmarks
1. Select the line where you wish to place the bookmark.
2. Press the Toggle Bookmark button 'Q'
OR
Right-click the line and select Toggle Bookmark from the shortcut menu
OR
Select Edit=Bookmarks>Toggle Bookmark (Ctrl F2).

Moving to a bookmark

To move forward through the Select Edit=Bookmarks=Next Bookmark (F2)
bookmarks or
=
press the Next Bookmark button Q"
To move backwards through the Select Edit>Bookmarks>Previous Bookmark (Shift F2)
bookmarks or

press the Previous Bookmark button E’

Clearing a bookmark

1. Select the line where you wish to clear the bookmark.

2. Press the Toggle Bookmark button 'Q'
OR

Right-click the line and select Toggle Bookmark from the shortcut menu
OR
Select Edit=Bookmarks=Toggle Bookmark (Ctrl + F2).

Clearing all bookmarks in a file
To clear all bookmarks:

e Select Edit=Bookmarks=Clear All Bookmarks (Ctrl + Shift + F2)
OR

e Press the Clear All Bookmarks button @'

3.2.4 Breakpoints dialog

The Breakpoints dialog appears when you select the Edit=Breakpoints command. The dialog
gives a list of currently set breakpoints. You can:

~

www.celoxica.com Page 29

DK Design Suite user guide

Celoxica

e View all breakpoints

e Delete breakpoints

e Make a breakpoint conditional

e Disable or enable a breakpoint

e View code where the breakpoint is set
e Add a (duplicate) breakpoint

e Edit a breakpoint

Viewing all breakpoints

When the dialog box opens, it displays a list of all current breakpoints, identified by file
name and line number.

Deleting breakpoints

Select a breakpoint in the breakpoint list and click Remove. To delete all breakpoints, click
Remove All.

Making breakpoints conditional

On condition: Select the breakpoint in the breakpoint list and enter the condition on
which it will be active in the Break when box. This condition can be any
valid Handel-C expression. For example, y == 4 or x[7]! = 0. Note
that statements are not allowed, so you cannot usey = 4.

On repetition: Select the breakpoint in the breakpoint list and enter the number of
times that it must be passed before it is active in the Break after box. For
example, if you enter '5', the breakpoint will be triggered on the 6th
pass through the code.

You can also use the Break after box to specify how many times a
condition should be passed before it is active.

Disabling and enabling breakpoints

To disable a breakpoint, clear the box by its entry in the list of breakpoints. To enable it,
check the box.

View code where breakpoint is set

Select the breakpoint in the list and click the Edit code button.

Add a (duplicate) breakpoint

Select the blank box at the end of the breakpoint list. Type the file name and line number
(separated by a comma) in the Break at box. This allows you to have two breakpoints on
the same line with different conditions.

~

www.celoxica.com Page 30

DK Design Suite user guide

Celoxica

Editing breakpoints

Select the breakpoint in the list. Edit the file name and line number in the Break at box.
The file name and line number must be separated by a comma, e.g. parmult._hcc,112.

3.2.5 Using browse commands

The Edit=Browse command allows you to find definitions of and references to selected
variables or other symbols. If you make a change to a variable, this is a quick way of
finding everywhere that the variable is used.

To find the definition of a variable or other symbol

1. Select the symbol name in an edit window.

2. Select Edit=Browse=>Go to Definition or click the A button.

To find the first reference to a variable or other symbol

1. Select the symbol name in an edit window.

2. Select Edit=Browse=>Go to Reference or click the+ﬂ- button.

To move through the references to and definitions of a variable or other
symbol

1. Select the symbol name in an edit window.

2. To move forward, select Edit>=Browse=>Next Definition Reference or click the qb
button.

3. To move backward, select Edit=Browse>Previous Definition Reference or click the 5
button.

Browse commands summary

If you select a symbol name in a source file, you can use the browse commands and
buttons to find its definitions and references in all the files used in a project. If the
symbol name is defined more than once, a Resolve Ambiguity dialog appears, giving you the
list of symbols with that name, and which files they are in.

Button Command Function
a Go to Definition Jump to the source code line where the variable is defined
B Go to Reference Jump to the first source code line where the variable is used
‘F Previous Definition Jump to the previous definition or reference

IReference

www.celoxica.com Page 31

DK Design Suite user guide

Celoxica

E Next Definition Jump to the next definition or reference
[Reference

3.3 View menu

Command Shortcut Function
Status bar Show/hide the status bar
O Full screen Show the code editor pane at maximum size
Workspace Alt+0 Show/hide the Workspace window
Output Alt+2 Show/hide the Output window
Debug Windows> Control the windows in the debugger
L—% Properties Alt+Enter Display the Properties dialog for the current file or
selection

3.4 Project menu

Command Shortcut Function

Set Active Project> Select a project from the workspace to make current

Add to Project> Add a file or folder to the project

Dependencies... Select projects on which the project depends

Settings... Alt+E7 Open the Project Settings dialog box to do one of these
tasks:

e Use the logic estimator

e Create independent settings for a file

e Set the output directory for generated files
e Set preprocessor settings

Insert Project into Add a project to the workspace
Workspace...

www.celoxica.com Page 32

DK Design Suite user guide

Celoxica

3.4.1 Project settings

Project settings define how your files and projects are compiled and built. Select
Project>Settings to see the Project Settings dialog box. The different settings are available via
tabs. The tabs available will depend on the project type. For example, the Library tab is
only available for a library-type project.

The tabs available are:

e General
e Preprocessor

e Debug

e Synthesis

e Optimizations
e Chip

e Linker

e Build commands
e Library
If you can’t see the tab you want, then scroll the tabs by clicking on the arrows at the

end of the tabs. Some tabs may only be visible if you have selected a Handel-C file in the
left window.

The tabs in Project Settings have changed. There is a new Synthesis tab and the Compiler
tab has been removed. The Debugger tab is now called the Debug tab. Some of the options
are now on different tabs.

3.5 Build menu

Command Shortcut Function

% Compile Ctrl+F7 Run the compiler on the active document
(which must be a Handel-C code file), to
generate its .hco file.

& Build project F7 Build this project: run the compiler on all
-hcc files that are newer than their object
(-hco) files, then run the linker on the
object files to make the .dIl, _hcl, EDIF,
Verilog or VHDL files. (EDIF, VHDL and
Verilog are not available in Nexus PDK.)

ﬁ Stop Build Ctrl+Break Cancel a build in progress.

~

www.celoxica.com Page 33

DK Design Suite user guide

Celoxica

Rebuild All

Clean

Start Debug
E¥Go F5
il"Step Into F11
]’|.Run o Ctrl+F10
Cursor

Set Active Configuration

Configurations...

3.5.1 Selecting a configuration

Rebuild all files in this project: like Build,
except that all .hcc files are compiled.

Delete all the files that are created by
Build.

Pop-up menu giving three options:
(Build project if not built.) Run the

simulator at full speed until a breakpoint or
other stop is reached.

(Build project if not built.) Run to the first
statement in the function or macro invoked
in the current line. If the current line is not
a function or macro invocation, run to the
next statement.

(Build project if not built.) Run to the line
containing the text cursor.

Choose the active build configuration for
the current project.

Add or remove configurations.

Select Set Active Configuration from the Build menu. The Set Active Project Configuration dialog
appears. Select the configuration that you wish to use, and click OK.

3.6 Debug menu

The Debug menu appears when you build a project in Debug mode and then start the
debugger by pressing F5 (Go) or F11 (Step into).

Command Shortcut Function

(¢ Go F5 Runs the simulator until it reaches a breakpoint or
other stop.

@ Restart Ctrl+Shift+F5 Runs the simulator, starting at the first line of the
program.

] Stop Debugging Shift+F5 Stops the simulation.

(4 Break Pauses the simulation when it is running.

www.celoxica.com

Page 34

DK Design Suite user guide

Celoxica

il.i Step Into F11
9 Step Over F10
g Stepout Shift+F11

]1. Run to Cursor Ctrl+F10

i Advance Ctrl+F11

3.7 Tools menu

Command Shortcut

Source Browser Alt+F12

Customize Toolbars...

Keyboard Shortcuts...

Options...

3.7.1 Source browser

Moves to the end of the next clock edge executed
within the current thread, or to the next function
call, or to the next breakpoint. If the current line is a
function or macro call, it runs to the end of the clock
cycle invoked by the call.

If the current line is a function or macro call, it runs
to the end of the clock cycle after the function (steps
over the function). Else as for Step Into.

Executes the rest of a function or macro, and steps
to the end of the clock cycle after the line which
invoked the function (steps out of a function).

Runs until the line containing the text cursor is
reached.

Moves forward a single execution point rather than a
complete clock cycle.

Function
Use the source browser dialog to find definitions and
references for variables and functions in your code.

Customize your copy of DK: change the display of
toolbars, and add menus and buttons to toolbars and
the menu bar.

Redefine the available keyboard shortcuts.

Set options for:
Editor; Tabs; Debug; Format; Workspace; Directories

The Source Browser command allows you to search for names of variables and functions
in your code. It directs you to their definition and lists references to them.

1. Build your project (Press F7). You will need to re-build if you have changed
your code since a previous build.

2. From the Tools menu, select the Source Browser command.

3. In the Browse dialog box, enter the symbol name to view its definition and

references.

You can also browse for definitions and references using symbol view.

~

www.celoxica.com

Page 35

DK Design Suite user guide

Celoxica

3.7.2 Customize Toolbars... command

The Customize Toolbars... command on the Tools menu allows you to change the DK user
interface in the following ways:

e Change the appearance of toolbars
e Add or remove toolbar buttons
e Add or remove menus and buttons on the menu bar

3.7.3 Tools Options dialog

Command Function
Editor Set the window options for the editor. Define when files are saved.
Tabs Define how tabs are handled and whether Auto-Indent is used.
Debug Set the default base used to display numbers in the debug windows.
This information is over-ruled by the Handel-C base specification.
Format Define the colour and font of text and markers in windows.
Workspace Set the number of recently opened workspaces in the workspace list.
Directories Set the directories that will be searched for and library files used in
projects.
Editor tab
Item Function when checked
Selection Use a selection margin in the editor window to enable you to view
margin breakpoints and debug symbols to the left of your source code.

Drag af_“_j drop Edit by selecting an area, and dragging it to a new position
text editing

Save before Save files before running tools defined in the Tools menu
running tools

Prompt before Ask before saving
saving files

www.celoxica.com Page 36

DK Design Suite user guide

Celoxica

Format tab

Command Function

Category Select window type(s) to modify
Font Select font to display text in

Size Select display font size

Colours Select text type to modify:

Foreground: Set foreground colour

Background: Set background colour
Sample Display sample text in selected settings
Reset All Return to default settings

Workspace tab

Command Function

Default workspace list ~ Set number of recent workspaces listed in the File=Recent Workspaces

command.
Tabs tab
Command Function
File type Define settings for specified file types or define default settings.
Tab size Equivalent number of spaces per tab
Insert Select whether to use spaces or tabs in file. Existing spaces/tabs will not
spaces/Keep tabs be changed.
Auto indent Check to auto-indent text to above line’s indent
Debug tab
Command Function

Base for numbers Select default display base in debug windows

Maximum number Specify maximum number of array or memory elements to be shown in
of visible elements \watch and Variables windows during simulation. Default is 16. If you
increase the number of elements, the simulation will be slower.

~

www.celoxica.com Page 37

DK Design Suite user guide

Celoxica

Directories tab

Command

Show directories for

Function
From the dropdown list, select Include files path list or Library modules
path list.

Add or remove directory paths to search for files. You can select
directories individually, or enter multiple paths separated by commas.

3.8 Window menu

The Window menu allows you to control the size and display of editing windows.

Command

New window
Split

Close

Close All
Cascade

Tile Horizontally
Tile Vertically
Arrange Icons
Windows...
List of files

Function

Create a copy of the current window

Split the window into two or four views

Close the current window

Close all windows

Cascade all open windows with title bars visible

Display all windows, splitting the viewing area horizontally

Display all windows, splitting the viewing area vertically

Arrange minimized window icons at the bottom of the viewing area
List and control the open edit windows

A list of files currently open for editing appears after the Windows option.
The file currently selected is marked by a tick.

3.8.1 Windows dialog

The Windows dialog (Window=Windows) gives the names of all open edit windows. You can
make one of them the current window, or select a group of windows to be saved, closed

or tiled.

www.celoxica.com

Page 38

DK Design Suite user guide

Celoxica

3.9 Help menu

Command Shortcut Function
Help Topics F1 List the Help topics
About DK Design Suite - Give version etc.

3.10 Keyboard shortcuts

This table gives a list of the default keyboard shortcuts. You can change them using the
Tools=>Keyboard Shortcuts command.

Command Shortcut Function

File

New... Ctrl+N Display the New dialog to create:
e A project
o Afile
e A workspace

Open... Ctrl+0O Display the File Open dialog

Save Ctrl+S Save the active document

Print Ctrl+P Print the active document

Edit

Alt+drag Select rectangular area

www.celoxica.com Page 39

DK Design Suite user guide

Celoxica

Undo Ctrl+z Reverse the most recent change to the active document or to
the workspace
Redo Ctri+Y Reverse the most recent undo
Cut Ctrl+X Copy the current selection and delete it
Copy Ctrl+C Copy the current selection to the clipboard
Paste Ctrl+V Copy the clipboard to the current selection
Delete Del Delete the current selection
Find Ctrl+F Find string or regular expression
F3 Find next string or regular expression
Shift+F3 Find previous string or regular expression
Replace Ctrl+H Replace found selection
Bookmarks... Alt+F2 Display the project’s bookmarks dialog box

Ctrl + F2 Toggle selected bookmark on or off
F2 Go to next bookmark
Shift + F2 Go to previous bookmark

Ctrl Shift Clear all bookmarks
+ F2

Breakpoints... Alt+F9 Display the project’s breakpoints dialog box

You can also use F9 as a shortcut to insert a breakpoint at a line of code in the Code
Editor window.

View

Workspace Alt+0 Hide or show the Workspace window
Output Alt+2 Hide or show the Output window
Debug

windows:

Watch Alt+3 Hide or show the Watch window

Call Stack Alt+7 Hide or show the Call Stack window
Variables Alt+4 Hide or show the Variables window
Clocks/ Alt+5 Hide or show the Clocks/Threads window
Threads

Properties Alt+Enter Display the Properties dialog for the

current document or selection

www.celoxica.com Page 40

DK Design Suite user guide

Celoxica

Project
Settings...

Build
Compile
Build

Debug
Go
Restart

Stop
Debugging

Step Into

Step Over
Step Out

Run to Cursor
Advance

Tools

Source
Browser

Help
Help Topics
About

Output
Window

Alt+F7

Ctrl+F7
F7

F5

Ctrl+Shift
+F5

Shift+F5

F11

F10

Shift+F11

Ctrl+F10
Ctrl+F11

Alt+F12

F1

Double
click

F4
Shift+F4

Shows the Project Settings dialog box

Compiler selected file
Build this project

Run the simulator at full speed (until a breakpoint etc.)
Run the simulator from the beginning

Stop the simulation

Run to the first statement in the function invoked in the current
line. If the current line is not a function invocation, just run
until the next statement

Run until the start of the next statement

Run until the start of the statement after the line which invoked
the current function

Run until the line containing the text cursor is reached
Advance a partial clock cycle, to the next code line.

Show a symbol browser dialog box

List the Help topics
Gives the DK and compiler versions

Takes you to line in source code

Next error
Previous error

www.celoxica.com

Page 41

DK Design Suite user guide ' -
Celoxica
Windows
control
F6 Next pane in split window
Shift+F6 Previous pane in split window

www.celoxica.com Page 42

DK Design Suite user guide

Celoxica

4 Project development

4.1 Project types

When you start a new project, you need to define its type. A new project may be:

a chip o

a board ®

a system Ll

a core

a library -]

a pre-defined
chip, system or
board

Not targeted to a particular product. Will not use device-specific
resources. Cannot be built as Generic mode.

Allows you to have multiple chip projects within a board project.
Targeted to chips defined within board. Cannot be built as Generic
mode.

Allows you to have multiple board projects within a system project.
Targeted to chips defined within boards. Cannot be built as Generic
mode.

A discrete piece of code, compiled to a specific architecture, which may
be used as part of a larger design. Cannot be built as Generic mode.

Pre-compiled Handel-C code that may be re-used or sold elsewhere. If
built in Generic mode can be rebuilt to target EDIF, VHDL or Verilog. If
built in other mode can only be linked with projects in that format.

Targeted to a known product. These systems will be optimized for that
product, and should only be placed and routed onto that product.
Cannot be built as Generic mode.

Common pre-defined project types are supplied with DK.

4.1.1 Creating a project

1. Select New from the File menu.

2. Select the Project tab in the dialog that appears.

3. Enter the name and location (path name for the directory that it will be stored
in) for your project. You can look for a directory by clicking the ... button to the
right of the Location box.

4. Select the appropriate project type from the types listed in the Project pane.
5. Click OK.

By default, a new workspace is created for your project in the same directory as the
project. Workspace files have .hw extensions. Project files have .hp extensions.

Your license may restrict the devices-specific projects you can create

www.celoxica.com Page 43

DK Design Suite user guide

Celoxica

4.2 Managing project files

You can order the files within your project into folders. These folders are only used to
organize the files. They do not exist as folders on your hard disk and have no effect on
your directory structure.

1. Select Project=Add to Project=New Folder

2. Type the name of the folder in the dialog box that appears.

3. Type the extension for the file types it should contain. You can leave the box
blank.

4. Click OK. A new folder appears in the File View window.
5. Drag the files that you wish to move across to the folder.

4.2.1 What files are generated for a project?

The table below lists the files built for a workspace WSpace .hw, containing a project Proj,
consisting of one Handel-C file Code .hcc that has been built for debug. Code .hcc
#includes the file Incl _hch. Output and Intermediate files will be stored in the Debug
folder.

Directory File name File type
Workspace WSpace.hw Workspace
directory
WSpace.pref Contains window layout preferences
Project build.log Records command line sent to the compiler (determined
directory by project settings / command line options) and any
feedback from the compiler during a build, e.g. errors,
NAND count
Code.hcc Source file
Incl _hch Header file
Proj.hp Your project file
Intermedia Code.hb A program browse file used for symbol view
te
directory
Code.hco Handel-C object file built during compilation
Output Proj.dll Part of the simulator
directory
Proj -exp Part of the simulator
Proj.hb A program browse file used for symbol view

~

www.celoxica.com Page 44

DK Design Suite user guide

Celoxica

Proj.lib Part of the simulator

The default extensions for Handel-C files are now .hch, .hcc, .hcl and .hco, rather than
-h, .c, .lib and .obj.

Files and paths

The current directory is the directory containing the current project’s .hp file. All relative
path names are calculated from that current directory.

4.2.2 Adding files to a project

When developing a DK project you can add a file that you have already written or create
a new, empty one.

If you have existing Handel-C files which use the old extensions (.c, -h) you should
rename them. The new extensions for Handel-C files are .hcc and _hch. Files with old
extensions should still be recognized.

Adding a file to an existing project

1. Select Project>Add to Project>Files
OR

Right-click the mouse on the project, and select Add Files to Folder from the
shortcut menu.

The Add Files dialog box appears.

2. Select the type of file you wish to browse for from Files of type pull-down list.
You can search for Handel-C files, ANSI-C/C++ files or all types of files.

3. Select one or more files to add and click Open.

Opening an existing source code file does not add it to the project. It will not be built or
compiled. You must explicitly add files to the project.

Setting the language of a file

e When you are adding a file to a project, browse for the file using the
appropriate file type in the Files of type box.

OR

e Click on the file in the File View window. Then access the file properties
(View=Properties, or right-click on the file in the File View window). You can select
the language on the General tab.

~

www.celoxica.com Page 45

DK Design Suite user guide

Celoxica

Selecting the language of a file

The following languages are supported for source files in DK:

e Handel-C
e ANSI C/C++

The language of a file can be selected

when you create a file (File=New) or add an existing file to a project (Project>Add
to Project=>Files)

OR
e by accessing the Language box in the Properties dialog (View=Properties>General)

If you have ANSI C or C++ files you need to specify custom build commands, to ensure
they are built by the backend compiler.

4.2.3 Multi-file projects

You can combine multiple files in a single project. The project can have a single main()
function or several. If there are multiple main functions within a single project, they can
be loaded onto the same chip. Each main() function can be associated with a different
clock by putting it in a separate source file. If you have more than one main() function in
the same source file, they must all use the same clock.

The project can include libraries (pre-compiled Handel-C code). EDIF, Verilog and VHDL
linking is done by Place and Route tools.

4.2.4 Linking multiple files

The Handel-C compiler has a linker, allowing you to have multiple input files and links to
library files.

www.celoxica.com Page 46

DK Design Suite user guide

Celoxica

Multiple files can be linked into a single output module. These files can be pre-compiled
core modules, libraries or header files. The extern keyword allows you to reference a
function or variable in another file.

Editor

L L 2
Source files Header files

Fre-processor

r

Cormpiler

L J

Ohject file

Linker - El

FFGAMPLD
wersion
“WHOL code

aynthesis
EDIF code

>

Object files

LINKING MULTIPLE FILES TO A SINGLE OUTPUT MODULE

Linking is carried out during a build. You define the files to link by adding files to a
project within the GUI.

4.2.5 Removing files or folders from a project

You can remove a file or folder from a project by selecting it in the Workspace window
and pressing the Delete key or selecting Edit>Delete.

~

www.celoxica.com Page 47

DK Design Suite user guide

Celoxica

Note that the folders within a project do not exist within your directory structure. If you
delete a folder from a project, its contents will also be deleted. Files are not deleted the
file from the hard disk, so no confirmation will be asked for.

4.2.6 Search paths for project files

Code files that you have added to the project workspace will be compiled and built.
Header files will only be found by the preprocessor if they exist on a known path.

The directories searched are in the following order:
1. Directory containing the Handel-C file that has the #include directive (if
within quotes)

2. Directories listed in Project>Settings>Preprocessor=>Additional include
directories (in the order specified)

3. Directories listed in the Directories pane of the Tools>Options dialog (in the
order specified)

4. Directories in the HANDELC_CPPFLAGS environment variable (in the order
specified)

4.3 Workspace and project directories

When you create a workspace, a directory is created for that workspace. Projects within
the workspace may be in the same directory or a sub-directory.

When you build a project, a directory is created for the build results. The default
directory name is the name of the configuration type (Debug, Generic, Release, Verilog
VHDL or EDIF). You can change this by setting the Output Directory values in the General tab of
the Project Settings dialog.

4.3.1 Adding an existing project to a workspace

To add an existing project to the current workspace:

1. Select Insert Project into Workspace from the Project menu.
An Open dialog appears.

2. Browse for the project (.hp) file that you wish to add to the workspace.

4.4 Configuring a project

Once you have created a project, you should configure its settings. These settings define
what type of chip is targeted, and how the compiler, preprocessor and optimizer work.

~

www.celoxica.com Page 48

DK Design Suite user guide

Celoxica

The default settings are correct for a new project that you wish to debug.

4.4.1 Defining project configurations

A collection of project settings is referred to as a configuration. DK provides six default
configurations: Debug, Release, VHDL, Verilog, EDIF and Generic. VHDL, Verilog and
EDIF are not available in Nexus PDK.

You can define your own configurations by copying an existing one and making changes
to it.

1. Select Build>Configurations...

2. Click the Add button in the dialog that appears.

3. Enter a name for your new configuration, and select the configuration type
that you wish to use as a base in the Copy settings from box. Click OK.

4. Click the Close box.

5. Open the Project settings dialog, select the new configuration and edit the
settings as required.

User-defined configurations are only available within the project they were created in.
The maximum number of configurations in a single project is 1024.

Making changes to a project configuration
To change a project configuration, open the Project Settings dialog, and select it in the
Settings For.. box.

Any changes that you make are saved with this configuration.

4.4.2 Complex projects

If you know that you are going to have multiple projects (perhaps you need to have two
independent circuits on the same chip), it is better to create a workspace first and then
add the projects to it.

If you have an existing workspace set up, open it. Otherwise:

1. Select New from the File menu. Create a new workspace to store your
project(s).

2. You are asked to enter the workspace name and the path for the directory
where it is to be stored. Workspace files have .hw extensions
Type the path in the Location box,
OR

Use the _| button to browse for a directory.

www.celoxica.com Page 49

DK Design Suite user guide

Celoxica

Creating a complex project

If your project is a board or system, it will contain subprojects. If you merely add files to
a complex project, you can compile them but not link them. For them to be linked
successfully, they must be in a sub-project (which may be a chip, core or library).

To ensure that the subprojects are built when you build the complex project, you can set
up the subprojects as dependencies of the board or system project. Select
Project=Dependencies... You will be offered a list of the projects in the workspace. Check the
ones that you wish to be rebuilt when you build the complex project.

When you create a new complex project type (by writing a new .cf file) a dialog box
appears when you click OK. The New Project Components dialog box asks what projects you
wish to use for the components of your project. You can either create a new project or
select one within the workspace from the drop-down list. If your project exists but is not
in the workspace, you can add it using the Insert Project button.

4.5 Project and file dependencies

Dependencies ensure that files that are not part of the project are updated during a
build. They also specify the order that files must be compiled and built.

There are three types of dependencies used in DK:

e Project dependencies
e File dependencies
e External dependencies

The only one you can change directly is Project Dependencies. The others show
information calculated by the compiler.

4.5.1 File dependencies

File dependencies are listed in the file properties. They specify:

e The user include files that are not included in the project but are needed to
compile and build a selected file

e Other files in the project that must be compiled before this file

These dependencies are generated when you compile the file. You can specify
dependencies for a file that is compiled using custom build steps.

To examine dependencies for a file

Select the file in the File View pane of the Workspace window and press Alt +
Enter

OR

~

www.celoxica.com Page 50

DK Design Suite user guide

Celoxica

e Right-click the file name and select Properties from the shortcut menu

4.5.2 Project dependencies

The Project=Dependencies... dialog allows you to select other projects within the workspace
that this project is dependent on. Projects listed here will be rebuilt as necessary when
the project is rebuilt.

If you are building a complex project, such as a board or system that has several chips
on it, you can create a separate project for each chip, and make the system project
dependent upon them.

4.5.3 External dependencies

The External Dependencies folder appears in the Workspace window after a project has been
built. It contains a list of the header files required by the project that are not included in
the project.

4.6 Properties dialog

To view the properties of a file, folder, project or workspace:
1. Select a file or other item in the Workspace window.
2. Select View=Properties.
Alternatively you can right-click after selecting the item and choose Properties.

The properties are displayed on the following tabs:

e General
e Inputs
e Outputs

e Dependencies

4.6.1 General tab

The information displayed on the General tab depends on whether you are viewing the
properties of a file, folder, project or workspace.

Selection Item Description
File Filename Displays name and full path of current file
Language Allows you to select file type: Handel-C or ANSI C/C++

~

www.celoxica.com Page 51

DK Design Suite user guide

Celoxica

Folder Folder Name Displays name of folder and allows you to change it

Extensions Displays the extensions associated with the folder and
allows you to change them

Project Project File Displays name of project

Workspace Workspace Name Displays name of current workspace
Workspace Path Displays full path to workspace file (.hw)

The language option allows you to choose whether to compile a file for Handel-C, ANSI C
or C++. If you want to build ANSI C or C++ files, you need to specify custom build
commands.

4.6.2 Inputs tab

The information on the Inputs tab is set up by the Project settings. If Always use custom
build step has been selected for the file or project, inputs are specified by the build
commands. Otherwise, they are determined by the compiler.

Selection Item Description
File Tools Displays tools associated with current file
Files Displays the name and full path of current file
Project Tools Displays tools associated with current project
Files Displays the name and relative path of input files for each tool

4.6.3 Outputs tab

The information on the Outputs tab is set up by the Project settings. If the Always use
custom build steps option has been selected for the file or project, outputs are specified
by the outputs defined on the Build commands tab in Project Settings. Otherwise,
outputs are determined by the compiler.

www.celoxica.com Page 52

DK Design Suite user guide

Celoxica

Selecti Item Description
on
File Tools Displays tools associated with current file
Files Displays the name and relative path of the output file for the current

build configuration

Project Tools Displays tools associated with current project

Files Displays the name and relative path of the output files for the
current build configuration

4.6.4 Dependencies tab

The Dependencies tab is only visible on the Properties dialog if you have a file selected. The
information on it is set up by the Project settings. If Always use custom build steps has
been selected for the file, the dependencies are specified by the build commands.
Otherwise, they are determined by the compiler.

Item Description

Tools Displays tools associated with current file

Files Displays the files that must be compiled before the selected file:

e user include files that are not included in the project but are needed
to compile and build the selected file

e other files in the project that must be compiled before this file

The list is generated when you compile the file. If you have used a custom build
step, the list is generated from the information that you give in the Build
commands tab.

4.7 Project and file settings

Project settings define how your files and projects are compiled and built. Select
Project>Settings to see the Project Settings dialog box. The different settings are available via
tabs. The tabs available will depend on the project type. For example, the Library tab is
only available for a library-type project.

The tabs available are:

e General
e Preprocessor

www.celoxica.com Page 53

DK Design Suite user guide

Celoxica

e Debug

e Synthesis

e Optimization
e Chip

e Linker

e Build commands
e Library
If you can’t see the tab you want, then scroll the tabs by clicking on the arrows at the

end of the tabs. Some tabs may only be visible if you have selected a Handel-C file in the
left window.

The tabs in Project Settings have changed. There is a new Synthesis tab and the Compiler
tab has been removed. The Debugger tab is now called the Debug tab. Some of the options
are now on different tabs.

4.7.1 Independent settings for files

You can create independent settings for a file. You might wish to do this if you wanted to
change the optimization level or specify custom build commands for a particular file.
Project settings for a file override the general project settings.

To create settings for a file:

1. Open the Project Settings dialog (either right-click the file in the File View and
select Settings, or select Project>Settings).

2. Select the name of the file that you wish to affect in the file pane of the
Project Settings dialog.

3. Make the appropriate changes.

4.7.2 General tab

Different settings are available for projects and for individual files.

www.celoxica.com Page 54

DK Design Suite user guide

Celoxica

Item

Generate debug
information

Always Use Custom

Build Steps

Exclude From Build

Verilog 2001

Intermediate files

Output files

Meaning

Compile for debug-enabled
simulation. Only available in Debug,
Release and Generic modes.

Allows you to use custom build steps
for a Handel-C file instead of a normal
build. Only available if you've clicked
on a file in the left pane.

Excludes file from build. Only
available if you've clicked on a file in
the left pane.

Target Verilog IEEE 1364-2001
instead of IEEE 1364-1995.

The sub-directory where intermediate
files are stored

The sub-directory where the final
output is stored (.dll, netlist etc.)

Value

Check for Yes

Check to use
custom build
steps

Check to
exclude file
from current
build.

Check to
target Verilog
IEEE 1364-
2001.

Directory path
name relative
to the project
directory

Directory path
name relative
to the project
directory

Default

Checked for
Debug. Not
checked for
Release or
Generic.

Clear

Clear

Clear

configuration

name

configuration
name

If you specify custom build steps, they will always be executed for a project or a non-
Handel-C file. If you specify them for a Handel-C file, they will only be executed if you
tick Always Use Custom Build Steps.

www.celoxica.com

Page 55

DK Design Suite user guide

Celoxica

4.7.3 Debug tab

Item

Working
directory

Detection of
simultaneous
function calls

Detection of
simultaneous
channel
reads/writes

Detection of
simultaneous
memory
accesses

Meaning

Value

Directory that the simulator uses as the Directory

current working directory

Detect simultaneous calls to the same

path name
relative to
the project
directory

Check to turn

function when debugging. You can only option on

use this option in Debug.
Detect simultaneous accesses to the

Check to turn

same channel when debugging. You can option on

only use this option in Debug.

Detect simultaneous accesses to

Check to turn

memory when debugging. You can only option on

use this option in Debug.

Default

Current project
directory (.)

Checked

Checked

Checked

Detection of simultaneous memory accesses will only detect simultaneous accesses to different
addresses within a memory, not simultaneous accesses to the same address.

4.7.4 Preprocessor tab

Item

Preprocessor
definitions

Additional
include
directories

Ignore standard
include
directories

Additional
preprocessor
options

Meaning

Equivalent to the #define directive

Add directories to the search path
for include directories

Allows you to omit default include
search path, (to ignore standard

include files).

Add any cpp commands

Value

Set as required

Set as required;
separate multiple
paths by a
comma

Check to omit
default include
search path.

Set as required

Default

DEBUG, SIMULATE
or NDEBUG

None

Clear

None

www.celoxica.com

Page 56

DK Design Suite user guide

Celoxica

4.7.5 Synthesis tab

Item

Expand netlist for:

Enable mapping to
ALUs

Limit ALUs of type

Enable mapping to
LPM macros (-Ipm)

Generate macros
above width

Meaning

Specify whether the netlist should
be expanded to minimize area
(select Area from drop-down list)
or to maximize speed (default).
This option only has an effect for
EDIF output for Actel devices.

Causes compiler to target
embedded ALUs (e.g.
multipliers) where available on the
device.

Limits the number of embedded
ALUs of a specific type that are
targeted by the compiler. This is
useful if not all ALUs on the device
are available for the design.

This option is only available if Enable
mapping to ALUs is turned on and a
device with embedded ALUs has
been selected.

Causes compiler to generate
macros for common operators (e.g.
multipliers, adders) instead of
expanding them to gates.

Place and route tools can use these
macros to optimize the logic for a
particular device. The logic
produced tends to be optimized for
speed, but may increase the size of
your design.

Specifies width above which
macros should be created

Value

Select Area or
Speed

Check to turn
option on

Select the type
of ALU and
specify the
maximum
number of ALUs
of this type that
the compiler
can map to

Check to turn
option on

Set to width
required. For
example, a
value of 8 will
mean macros
will be created
for operators
that are more
than 8 bits
wide.

Default

Speed

Checked for
devices that
have
embedded
ALUs

The
maximum
number of
ALUs
available on
this device

Unchecked

This option is
only available
for EDIF
output for
Altera
families.

www.celoxica.com

Page 57

DK Design Suite user guide

Celoxica

Enable memory
pipelining
transformations

Disable fast carry
chain optimizations

Enable Technology
Mapper

Enable retimer

Creates pipelined memory accesses
for on-chip SSRAM, if memory is
read into an uninitialized register
reserved specifically for the use of
the memory.

Disables the generation of fast
carry chains for adders,
subtractors, multipliers, dividers,
comparators and modulo
arithmetic.

Fast carry chains tend to speed up
a design, but restrict the placement
of logic on a device.

Creates EDIF output with look-up
table primitives instead of logic
gates

Moves flip-flops in the circuit
around to try and meet the
specified clock rate.

Check to turn
option on

Check to disable
fast carry chains

Check to turn
option on

Check to turn
option on

Checked

Not checked.

This option is
only available
for EDIF
output.

Checked for
Xilinx and
Actel devices,
clear for
other
devices.

This option is
only available
for EDIF.

Checked for
Xilinx
devices, clear
for other
devices.

This option is
only available
for EDIF.

www.celoxica.com

Page 58

DK Design Suite user guide

Celoxica

4.7.6 Optimizations tab

Item

High-level
optimization

Rewriting
optimization

Common sub-
expression (CSE)
optimization

Partitioning
before CSE
optimization

Repeated CSE
optimization

Conditional
rewriting
optimization

Repeated
conditional
rewriting
optimization

Meaning

Early, high level optimization. Speeds up
compilation.

Optimize logic where signals are tied high
or low etc.

Eliminate duplicate common sub-
expressions. Usually leads to smaller
designs but may increase routing and
hence delay.

Split up complex gates before performing
CSE

Repeats CSE optimization, removing
further sub-expressions. Slows down
compilation.

Assumes certain states and propagates
the conclusions through the logic.
Optimizes according to results. Will slow
down compilation. Best used in
conjunction with other optimizations.

Repeats the conditional rewrite until
nothing more can be achieved. Can
substantially increase compilation time.

Value

Check if
required

Check if
required

Check if
required

Check if
required

Check if
required

Check if
required

Check if
required

Default

Not checked for
Debug mode.
Checked for all
other modes.

Checked.

Not available
for Debug or
Release modes.

Checked.

Not available
for Debug or
Release modes.

Checked.

Not available
for Debug or
Release modes.

Checked.

Not available
for Debug or
Release modes.

Checked.

Not available
for Debug or
Release modes.

Not checked.

Not available
for Debug or
Release modes.

\ Some versions of Microsoft Visual C++ are non-optimizing. These will ignore DK
\ optimizations and the DK simulation will run more slowly.

www.celoxica.com

Page 59

DK Design Suite user guide

Celoxica

4.7.7 Chip tab (Project settings)

Item Meaning Value Default
Family The family containing the part you are Select family Generic
targeting from drop-down

list

Device The device you are targeting Select device Clear
from drop-down
list

Package The package of the device you are targeting Select package Clear
from drop-down

list
Speed The speed grade of the device you are Select speed Clear
Grade targeting grade from drop
down list
Part The part number you are targeting. Note Type in part Depends on
that the part number will override the number project

device, package and speed grade settings.

You must specify a chip type for EDIF output. If you do not want to specify a target for
VHDL or Verilog output, select Generic. This will result in generic VHDL or Verilog without
any target-specific constructs such as RAM primitives.

Your license may restrict the families you can target. These families will not be visible in
the Family list.

4.7.8 Linker tab

The items that appear on this tab depend on which build configuration you have selected.

www.celoxica.com Page 60

DK Design Suite user guide

Celoxica

Item

Output format

Object/library
modules

Additional
Library Path

Additional
C/C++ Modules

VHDL/Verilog
output style

Ignore
standard lib
path

Save browse
info

Generate
estimation info

Exclude timing
constraints

Meaning

Target for the compiler

Extra libraries (-hcl)
and object files (.hco)
required

Directory path to search
for Handel-C libraries

C or C++ libraries and
object files required for
the project

Output style for VHDL
or Verilog.

(You cannot target
VHDL or Verilog from
Nexus PDK.)

Don't look for libraries
along default library
path

Store information
needed to browse
symbols

Get the compiler to
generate HTML files
giving depth and timing
information (only
available for EDIF
builds)

Disable generation of
timing constraints (in
generated NCF, TCL or
ACF file)

Value

Determined by target
settings

Type path and file
specifications
separated by commas

Type paths separated
by commas

Type path and file
specifications
separated by commas
Active-HDL, Generic,
LeonardoSpectrum,
Precision, ModelSim
or Synplify

Choose Active-HDL or
ModelSim for
simulation. Choose
Generic if you want to
target a synthesis tool
that is not listed.

Check not to search
standard path

Check to store

Check for Yes

Check to disable

Default

As required

As required

None

None

Generic

(VHDL and Verilog
only)

Clear

Checked

Clear

Clear (timing
constraints are
generated)

www.celoxica.com

Page 61

DK Design Suite user guide

Celoxica

Simulator Specify options for the Define how the C++ Link options defined in

compilation backend compiler. Used compiler is called to the cl.cf file (Debug,

command line for building simulations compile Generic and Release
and PC-hosted code. simulator.dll. You only).

may use 4 compiler-
supplied parameters.
You can also specify
commands to
generate an .exe file.

The Handel-C netlist simulator is no longer available.

4.7.9 Build commands tab (Project settings)

You can specify build commands for a project or an individual file. The commands wiill
only be executed in the build configuration in which they were specified.

Build commands are always available for a project, and for ANSI-C and C++ files. If you
want to specify commands for a Handel-C file, tick the Always Use Custom Build Steps box on
the General tab of Project Settings. You will then be able to access the Build Commands
tab.

Description Specify a description to be displayed when the custom build step is
executed. The description can include file and directory macros.

View Choose Commands, Outputs or Dependencies. You can only specify
dependencies for files.

Commands / The use of the pane depends on what you have selected in the View box.

Outputs /
Dependencies
H Create a new command, output or dependency. Press return when you
— have finished writing.
}{ Delete the command, output or dependency selected.
f Move selected command, output or dependency up.
{, Move selected command, output or dependency down.

4.7.10 Library tab

In a library project the Library tab provides settings which are provided by the Chip tab and
Linker tab in other projects.

~

www.celoxica.com Page 62

DK Design Suite user guide

Celoxica

Item Meaning Value

Family The family Select family from dropdown list
containing the
part you are

targeting
Part The part number Type the part number
you are targeting
Object/library Extra libraries Type path and file specifications
modules (-hcl) and separated by commas
object files
(-hco) required
Additional Extra library Type paths separated by commas
library path directories
required
Save browse Store Check for Yes
info information
needed to

browse symbols

Default

Generic option is
equivalent to
omitting the -f
option from the
command line

Depends on
project

Clear

Default path is
DK\Lib directory

Checked

Handel-C library files with the extension . 1ib and Handel-C object files with the

extension .obj are no longer supported.

www.celoxica.com Page 63

DK Design Suite user guide

Celoxica

5 Building a project

5.1 Build process
A build happens when:

e You click on the Build button iﬁ

e You have uncompiled files and you select one of the Start Debug commands in
the Build menu

e You select Build or Rebuild All from the Build menu

This should:

1. Pre-process header files and compile dependent header files.

2. Compile any files that have been added or changed since your last compilation
and also compile any files dependent upon them. (Changed files are saved.)

Compile all dependent projects.
Link the compiled files together.
Calculate the number of gates used.
Build a symbol table.

NOo O kW

Generate a simulator .dl1 or a netlist.

If you change the configuration for a project, you will need to compile all the files. Select
the Build>Rebuild All command to ensure that all the files are recompiled.

The results of the compilation and build are displayed in the Build window. Double-
clicking an error takes you to the appropriate line in the source file.

5.1.1 Running the compiler

The Handel-C compiler compiles and optimizes Handel-C source code into a file suitable
for simulation, a VHDL or Verilog file ready for synthesis or a netlist file which can be
placed and routed on a real device. (VHDL, Verilog and EDIF outputs are not available in
Nexus PDK.)

DK includes a modified version of the GNU preprocessor. Flags can be passed to the
preprocessor using the Preprocessor tab of the Project>Settings dialog box.

You can run the compiler in either of two ways:

e The compiler is normally invoked automatically when you select an option
from the Build menu.

e To run the compiler from a command line, use the command handelc.

~

www.celoxica.com Page 64

DK Design Suite user guide

Celoxica

Once the compile has completed, the output window shows an estimate of the number of
NAND gates required to implement the design.

5.1.2 Setting up code for debug

There are several methods of coding Handel-C to help you debug a project.
They fall into two kinds:
e Code that will automatically be discarded by the compiler if you do not compile
a project for debug, e.g. the with {infile = "file"} directive.

e Code where you supply alternatives to be compiled for debug and release or
target compilations. In these cases, you can use the #ifdef DEBUG, #ifdef
NDEBUG and #ifdef SIMULATE directives.

By default, DEBUG and SIMULATE will be defined if you compile for debug, and NDEBUG will
be defined for all other compilations.

Example

#ifdef SIMULATE

sim_chan ? var; // Read from simulator

else

HardwareMacroRead(var); // Real HW interface
endif

Summary of coding techniques used for debug
e Substitute simulator channels for hardware interface channels.
e Use the assert directive to stop a compilation if a condition is untrue.
e Substitute file input for external channel input.
e Export the contents of variables into files.

5.1.3 Building and compiling for debug

Debug is the default compilation configuration.

Open the Project Settings dialog (Alt F7). Check that Debug appears in the Settings For
dropdown menu. The compiler will create a file which is in turn compiled into native
machine code using Microsoft Visual C++, GCC or GNU C++. This creates the chip
simulation.

To build and compile your project, select Build from the Build menu. Messages from the
compiler appear in the Build tab of the output window.

www.celoxica.com Page 65

DK Design Suite user guide

Celoxica

5.1.4 Building with library and object files

Creating a library file

To create a library file, create a project of type library and build it as normal. It will
generate a -hcl file. Library projects have a Library tab instead of a Linker tab in the
Project settings dialog.

Using a library file
You can use a Handel-C library file in any project.

1. Select the Linker or the Library tab in the Project settings dialog.
2. Add the library file name to the Object/library modules box.

3. Default library paths for DK are set up in the Directories tab of the Tools>Options
dialog. If the new library's directory path is not set up for DK, set it up for
your project by adding the directory path to the Additional Library Path box.
Multiple file names must be separated by commas. Wildcards are not
supported.

Using an existing object file
You can use an existing compiled object (.hco) file in another project

1. Select the Linker or the Library tab in the Project settings dialog.

2. Add the object file name to the Object/library modules box. You may use an
absolute or relative path name. Multiple file names must be separated by
commas. Wildcards are not supported.

5.1.5 Preparing to build for hardware

Once your program has been simulated correctly you must add the necessary hardware
interfaces. It is worth testing all interface outputs and inputs using a simulator such as
the Waveform Analyzer before you build for hardware.

e Convert any file reading and writing procedures into interface or bus
procedures.
e Ensure that you have converted all C/C++ functions to Handel-C.

e Convert any interfaces to plugins into interfaces to black box code or remove
them entirely.

o Define and declare any external RAMs, off-chip interfaces etc.
e Change the project settings to EDIF, Verilog or VHDL.

You can only target hardware from DK Design Suite. Nexus PDK will only let you simulate
your project.

~

www.celoxica.com Page 66

DK Design Suite user guide

Celoxica

5.1.6 Compiling for release or target

When you are satisfied with your project, select Build>Set Active Configuration and choose the
type of build you require from the available configurations.

VHDL

VHDL files may be simulated using a VHDL simulator (such as ModelSim), synthesized
using an RTL tool, and then placed and routed. By default, most optimizations will be
turned on. This option is disabled in Nexus PDK.

Verilog

Verilog files may be simulated using a Verilog simulator (such as ModelSim), synthesized
using an RTL tool, and then placed and routed. By default, most optimizations will be
turned on. This option is disabled in Nexus PDK.

EDIF
EDIF files are ready to be placed and routed. By default, most optimizations will be
turned on. This option is disabled in Nexus PDK.

Release

Release allows you to simulate your project without the delays inherent in debug. It also
allows you to compile simulation-only libraries without debug information, to protect
intellectual property.

Generic

Generic build mode only applies to library projects. Generic libraries are Handel-C
intellectual property which are not targeted at a particular output format. They consist of
compiled code that can be used in another program. Generic mode can be linked for
simulation, EDIF 2.0.0, Verilog IEEE Std 1364-1995/2001 or VHDL IEEE 1076.6.

5.1.7 Report files

DK generates compilation report files in XML or plain text. A report is generated for the
project, with another file for each hcc file in the project.

The reports include:

e warnings and errors

e summary of hardware used

e area estimation

e block counts

e unused declarations

e optimisation information, e.g. removed flip-flops and memories

~

www.celoxica.com Page 67

DK Design Suite user guide

Celoxica

e registers that could not be moved by the retimer

They can be viewed with a standard browser such as Internet Explorer or Firefox, using
the Celoxica stylesheet supplied. If you wish, you may create your own stylesheet and
use another tool to parse or view the XML.

What's in the reports

All the messages that appear during a compilation or build are added to the report. They
are sorted and filtered into sections within the report.

Errors and warnings
The errors and warnings that appear in the DK GUI also appear in the report. They are
sorted and filtered within the XML reports.

Optimisations
The report gives details of optimisations performed by the compiler, such as reducing the
size of a circuit by rearranging and removing components.

These messages will appear in the report corresponding to the link stage of compilation.

Removed and altered symbols
There are two sections:
e Removed symbols

This tells you which identifiers have been removed. If a symbol is a duplicate,
the identifier will be tagged to show that.

e Altered symbols

This tells you which identifiers have been altered by the optimizer (for
example, made smaller).

The identifiers are sorted into alphabetical order.

Example
If a register corresponding to an identifier is removed (or merged with another) the link
stage report gives details of the identifier and why it was removed (or merged).

e If unused, so not compiled at all, there will be a message in the compilation
section.

e If optimised away later, the message will be in the high-level optimisation

section.
\\

www.celoxica.com Page 68

DK Design Suite user guide

Celoxica

e If optimised partially, or entirely but piecemeal, then there will be one or more
messages in the low-level optimisation section.

Retiming

Messages appear in the retiming section telling you what changes the retimer made, and
which registers are locked. If some are unexpectedly locked, their lack of movement
could be preventing the retimer reaching the desired clock rate.

If you also look at the output from the estimator (this will be in a separate file) you can
see where there are possible timing issues, such as the longest path. If registers on that
path are locked, work out if they need to be locked. If not, it may be possible to adjust
your sources in order to unlock, remove or move those registers.

Generating compilation reports

Reports are generated for each file in a build from the GUI, and individually from the
command-line.

Creating compilation reports from the GUI
XML report files are generated by default. To alter the settings for a project
1. Select Project->Settings->General tab.
2. Select the appropriate configuration and project
3. Select the Generate XML report and Generate plain text report checkboxes as required.

The reports are generated in a Reports subdirectory of the project configuration's output
directory. The file names are based on the target file names.

Example
For a project Proj containing the source files:

Files Purpose

Transmit.hcc Source files and header files for the project
Receive.hcc

Common.hch

Debug.c Files used to create a simulation of an external device
Debug.h
Software.c

For a Debug build with output directory Debug and intermediate directory Intermediate
the files

~

www.celoxica.com Page 69

DK Design Suite user guide

Celoxica

Intermediate\Reports\Tx_compile.xml
Intermediate\Reports\Rx_compile.xml
Debug\Reports\Proj_link._xml

would be produced if the Generate XML report box was checked.
Corresponding text files would be produced if the Generate plain text report box was checked

Note that there is a report file for each Handel C source file (*.hcc) and for the project
itself.

Creating compilation reports from the command line
To specify a (path and) filename for a plain text report file, use:

-Rt filename.txt

To specify a (path and) filename for an XML report file, use:

-Rx filename.xml

This will automatically refer to the default stylesheet for viewing in a browser.

Both may be specified.

Example
For a project consisting of the following files:

Files Purpose

Transmit.hcc Source files and header files for the project
Receive.hcc

Common.hch

Debug.c Files used to create a simulation of an external device
Debug.h
Software.c

To produce the XML reports for each file compilation and the link stage

handelc -c -o EDIF\Transmit.hco -Rx EDIF\Reports\Transmit_compile.xml -xc
Transmit._hcc

handelc -c -o EDIF\Receive._hco -Rx EDIF\Reports\Receive_compile.xml -xc
Receive.hcc

handelc -edif -o EDIF\Proj.edf -Rx EDIF\Reports\Proj_ link.xml -xo
EDIF\Transmit.hco -xo EDIF\Receive.hco

To only produce a report file for the link stage

www.celoxica.com Page 70

DK Design Suite user guide

Celoxica

handelc -edif -o EDIF\Proj.edf -Rx Proj.xml -xc Transmit.hcc -xc
Receive._hcc

In this case, the report file will be placed in the current working directory.

Viewing the reports

The recommended method is to use an XML- and XSLT-aware browser, such as Internet
Explorer or Firefox.

Tool From Version(s) Notes

Internet Explorer Microsoft 6 Browser. (See known problems.)
http://www.microsoft.com/windows/ie/default.mspx

Firefox Mozilla 0.8 Browser. (See known problems.)
http://www.mozilla.org/products/firefox/

Known problems with browsers
Internet Explorer is less compliant to the W3C standards (such as HTML, and particularly
CSS2) than some other browsers. Certain standard features do not work.

Firefox has problems with deeply nested tables. The XSLT processor in Firefox does not
appear to translate attributes with units expressed as percentages faithfully.

XML report files structure
The XML report generated from the GUI consists of the following files.

e An .xml file for each .hcc file in your project. (Default name
hccfilename_compile.xml)
e An .xml file for the linked project. (Default name hccfilename_link.xml)

The following files are supplied in the Stylesheets directory of your DK installation

e A Celoxica stylesheet for the XML (report_html_xsl)

e Flags for making changes to the way the XML report is displayed
(report_html_format.xml)

e A wrapper file (report.xsl) which is used to link to the desired stylesheet. If
you wish to use your own stylesheet, replace the default stylesheet pathname
with your own in this file.

www.celoxica.com Page 71

DK Design Suite user guide

Celoxica

report_html_format.xml flags
You may edit report_html_format.xml to enable or disable the format flags. These are
documented within the file. Enable a flag using the syntax

<flagname enable="" />

Disable a flag using the syntax

<flagname disable=""" />

Other methods of viewing the reports
If you wish to use other methods to render or view the XML files, please note that
Celoxica does not support them.

The supplied stylesheet report_html.xsl is primarily intended for convenient viewing of
an XML compilation report in an XSLT-aware browser. It only partially overcomes the
problems with Cygwin and some other tools.

The file report_html_format.xml contains some options to workaround some specific
problems using report_html _xsl with certain tools.

Enabling these options may cause problems processing the stylesheet with different
tools, and with browsers in particular.

Cygwin problems
Reports processed using Cygwin and Python and the supplied stylesheet
report_html .xsl do not contain correctly formed links to associated reports.

NXSLT problems

If an XML file is transformed using the Celoxica stylesheet report_html.xsl and NXSLT
(up to version 1.3), NXSLT complains that the stylesheet contains an invalid XPath. It
does not, but a workaround for that problem is not yet known.

Many of the tools, including NXSLT and Python XSLT libraries, have problems with files
over a certain size (for example, over 100 Mb).

5.2 Build commands in DK

Build commands are specified on the Linker tab or Build commands tab in Project Settings or
in the command-line compiler.

You need to specify custom build commands if you want to build a non-Handel-C file
(e.g. C or C++ file). You can also specify custom post-build commands.

~

www.celoxica.com Page 72

DK Design Suite user guide

Celoxica

.dll files

.dl1 files are created by default when you build a Handel-C simulation.

.exe files

If you want to build an .exe file, change the Simulator compilation command line on the Linker
tab in Project Settings. Alternatively, use an appropriate build command in the
command-line compiler.

.obj files

If you want to use Handel-C functions in your C or C++ code, you need to build the
Handel-C file as an .obj file. Change the Simulator compilation command line on the Linker
tab in Project Settings. Alternatively, use an appropriate build command in the
command-line compiler.

If you want to build C or C++ files for simulation, you need to build these files as .obj
files using custom build commands on the Build commands tab of Project Settings.

5.2.1 Simulator compilation command lines

The Simulator compilation command line is specified on the Linker tab in Project Settings. The
default command line uses the backend compiler you specified when you installed DK,
and the new simulator to build a .dl1 file for simulation. You need to change this if you
have changed your backend compiler (Visual C++ or GCC).

If you are using the command line compiler instead of the GUI, you need to select the
correct command from those listed below.

You also need to change the Simulator compilation command line if you want to build an .exe file
or an .obj file instead of a .dl1 file.

The netlist simulator is no longer available.

Commands for different compilers

There is a different default simulation command line for each of the backend compilers
supported by DK.

e Microsoft Visual C++: cl /Zm1000 /LD /0itybl /GX
/1" Instal IDir\DK\Sim\Include™ /Tp"%1l" /Fe"%2" %4

e GCC: g++ -dll -shared -fno-builtin -I1"InstallDir\DK\Sim\Include" -
02 -mno-cygwin "%1" -0"%2" %4

www.celoxica.com Page 73

DK Design Suite user guide

Celoxica

5.2.2 Generating a standalone executable

You can generate an .exe file from Handel-C by changing the default simulator
compilation command line. The command needs to target the correct backend compiler
(your C++ compiler).

If you build a simulation to run as an .exe file it will run faster than a simulation from the
DK GUI.

Using Project Settings in the GUI

If you are using the GUI compiler, change the default text in the Simulator compilation
command line pane in the Linker tab of the Project Settings dialog.

e Visual C++: cl /Zm1000 /0itybl /GX /ZI1"InstalIDir\DK\Sim\Include"
/Tp"%l"™ /Fe"%3.exe" %4

e GCC: g++ -dll -shared -fno-builtin -1"Instal IDir\DK\Sim\Include" -
02 -mno-cygwin "%1" -o0"%3.exe" %4

You could set up a new build configuration to store these project settings.

Using the command line compiler

If you are using the command line compiler, change the -cl option. For example, if you
are using GCC as your backend compiler:

handelc -s -cl"g++ -dll -shared -fno-builtin -1"InstalIDi rADK\Sim\Include"
-02 -mno-cygwin
"%l -0"'%3.exe" HandelCFileName.hcc

5.2.3 Generating an .obj file

If you want to use Handel-C functions in C or C++ code, you need to compile your
Handel-C file as an .obj file. To generate an .obj file from a Handel-C file you need to
change the default simulator compilation command line in DK.

Using the GUI

To create an .obj file from a Handel-C file using the GUI compiler, change the default
Simulator compilation command line on the Linker tab of the Project Settings dialog. Use the
relevant command for your backend compiler:

e Microsoft Visual C++: cl /Zm1000 /c /0itybl /GX
/1" Instal IDir\DK\Sim\Include" /Tp"%1" /Fo"%3.obj" %4

e GCC: g++ -c -shared -fno-builtin -1"InstalIDir\DK\Sim\Include" -02
%1 -0"%3.0bj" %4

You could set up a new build configuration to store these project settings.

~

www.celoxica.com Page 74

DK Design Suite user guide

Celoxica

Using the command line compiler

If you are using the command line compiler, change the -cl option:

e Visual C++: handelc -s HandelCFileName.hcc -cl "cl -c -02 -
1" Instal IDir\DK\Sim\Include" %1 -Fo%3.obj"

e GCC: handelc -s HandelCFileName.hcc -cl "g++ -c -02 -
1" Instal IDir\DK\Sim\Include"™ %1 -o%3.obj"

If you want to create an .obj file from a C or C++ file, you have to specify a custom build
command on the Build Commands tab in Project Settings.

5.2.4 Post-build commands

You can specify post-build commands for a project on the Build Commands tab in Project
Settings. Open Project Settings, then check that your project is selected in the left pane,
rather than a file. You can then select the Build commands tab. Any build commands that
are specified at the project level are executed after all the project files have been
compiled.

Example

To copy the Result.dll to a different directory after it has been compiled:

1. Select Commands in the View box and type
copy $(TargetDir)\Result.dll $(WkspDir)\bin\Result.dll

2. Select Outputs in the View box and specify $(WkspDir)\bin\Result.dll. as the
output file.

5.3 Custom build commands

Custom build commands are specified on the Build Commands tab in Project settings.
You can specify custom build commands for

e a project

e an individual file

You need to specify custom build commands if you want to build a file that is not a
Handel-C file (e.g. a C++ file).

If you specify custom build commands, they will always be executed for a project or a
non-Handel-C file. If you specify them for a Handel-C file, they will only be executed if
you tick Always Use Custom Build Steps box on the General tab.

The build commands will be executed at the appropriate point in the build process if the
output file is out of date with respect to the input file. Custom build commands applying

~

www.celoxica.com Page 75

DK Design Suite user guide

Celoxica

to the whole project will always be executed after the normal build process has
completed.

If you specify commands involving a .bat file, you need to precede the command with
"call".

The commands will only run in the configuration in which you specified them.

5.3.1 Specifying a custom build

To specify a custom build:
1. Open the Project Settings dialog (Project>Settings). Select a file or a project in
the left pane.

2. Click on the Build commands tab.
If you have selected a Handel-C file you will need to tick the Always Use Custom
Build Steps box on the General tab to access the Build commands tab.

Type a description in the Description box.
Select Commands in the View box.
Type your commands in the pane below.

o ok w

Select Outputs in the View box and write the names of your output files in the
pane below. You must specify at least one output file.

7. If you are specifying build rules for a file, you can also specify dependencies
(select Dependencies in the View box).

8. Click OK then build your project. You will see the text you specified in the
Description box as the custom build steps are executed.

If you are using GCC as your backend compiler, this should be specified in the build
command using g++ if you have a C++ file, or gcc if you have a C file.

5.3.2 Build commands, outputs and dependencies

Custom build commands, outputs and dependencies are specified on the Build commands
tab.

Use quotes around strings if they have spaces in them.

Commands

You can specify build commands when in the Commands view. Commands can include
file and directory macros. If you write more than one command, they will be run in order
from top to bottom. If you create a command involving a .bat file, you need to precede
the command with "call".

\\

www.celoxica.com Page 76

DK Design Suite user guide

Celoxica

Outputs

You can specify the names of output files when in the Outputs view. The files are time
stamped and the commands are only executed when the files are out of date with respect
to the associated source files or project. Specify different output files for each set of
commands. If you specify the same output file for more than one file with build
commands, or for a file and the project it belongs to, only the first set of commands will
be executed.

You must specify at least one output file (even if you specify custom build steps at
project level).

Dependencies

You can specify files that need to be built before the custom build step when you are in
the Dependencies view. This will affect the order of the build process.

5.3.3 File and directory macros

File and directory macros are supported for use in custom build commands. You can also
use them in the custom build description. Write the macros in the form $(Macro) where
Macro refers to one of the file or directory expressions listed below, such as $(IntDir).

Macros are expanded prior to display or execution. If the expanded macro contains
spaces, you will need to enclose the macro name in quotes. The directory or file
referenced must already exist or be created by DK or another tool before the macro runs.

File and directory macros make it easier to move your project to a different directory or
computer, and reduce the chance of typographical errors in file pathways.

www.celoxica.com Page 77

DK Design Suite user guide

Celoxica

Macro Description

$(IntDir) Path to the directory specified for intermediate files, relative to the
project directory

$(OutDir) Path to the directory specified for output files, relative to the project
directory

$(TargetDir) Full path to the directory specified for output files

$(InputDir) Path to input directory relative to project directory

$(ProjDir) Full path to the project directory

$(WkspDir) Full path to the workspace directory

$(TargetPath) Name and full path for the project output file
$(TargetName) Name of the output file

$(InputPath) Name and full path for the input file
$(InputName) Name of the input file

$(WkspName) Name of the project workspace
Examples
El{:l Program Files ;I (CIDebug
{:I Accessories [:IInputs
l:l Adobe [JIntermed_files
=1 Celoxica build.log
E{:l Dk Examplel.hp
: {_:l Ein Examplel.bw
{:I FFiles |E_E'| sum.hcc
{:I Cosim sum_nut.u:lat
{:I Do
=1 Examples | |
#-] EDIF
l:l exkern_C
E|{:| Handel-C
: El@ Examplel
r:l Debug
{:I Inputs
| Intermed_files

Assuming the directory structure above on drive C:

e $(OutDir) would expand to \Debug

e $(TargetDir) would expand to C:\Program
Files\Celoxica\DK\Examples\Handel-C\Examplel\Debug

~

www.celoxica.com Page 78

DK Design Suite user guide ' -
Celoxica
e $(ProjDir) would expand to C:\Program
Files\Celoxica\DK\Examples\Handel-C\Examplel
e $(WkspName) would expand to Examplel._hw

www.celoxica.com Page 79

DK Design Suite user guide

Celoxica

6 Commmand line compiler

The Handel-C compiler can be invoked from the command-line as well as from the GUI. If
you wish to use it from the command-line, you must pass options to it directly instead of
via the Project settings dialog.

To run the compiler from the command line, use the command handelc, for example:

handelc -verilog -syn Leonardo MyFile._hcc

6.1 Summary of command line options

The table below summarizes the options available when using the command line
compiler.

www.celoxica.com Page 80

DK Design Suite user guide

Celoxica

Option Meaning

-C Compile only. Do not generate netlist. Output .hco or _hcl file.

-f Family Specify target family

-p Part Specify target part

-fc Disable generation of fast carry chains

-b Generate browse info database file

—-notcon Disable generation of timing constraints in generated NCF, TCL
or ACF file

-r "Filename" Specify browse info database file name

-0 "Path_and_Name™ Specify output file name and path

-xc "Filename" Treat file as Handel-C source file

-xI "Filename" Treat file as Handel-C library file

-xo "Filename™ Treat file as Handel-C object file

-L "Pathname™ Add pathname to library path

-help Print help screen (summary of command line options)

Simulation and debugging options

-s Target simulator

-cl ""CommandLine" Specify command line for compiling simulator output

-be "Options" Pass options to backend compiler

-g Compile with debug information

-S"string" Detect simultaneous function calls, channel and memory
accesses

-W Reserved for future use.

Hardware output options (not available in Nexus PDK)

-edif Target EDIF output

-vhdl Target VHDL output

-verilog Target Verilog output

-e Estimate logic depth and area when generating EDIF output.
(Generate HTML files)

- lutpack Use technology mapper when generating EDIF output

-retime Enable retiming.

-syn SynthesisTool Specify VHDL or Verilog output style

www.celoxica.com Page 81

DK Design Suite user guide

Celoxica

-N-piperam

-N+speed

-N+area

Preprocessor options

-cpp "'Option"’

-D Symbol

-E

-1 ""Pathname"

-U Symbol
Optimizer options
-0

-0-

-0+ optimize

-0- optimize

-lpm Width

Turns off settings to create pipelined SSRAM.

Otherwise on-chip SSRAMs are pipelined, on suitable devices, if
memory is read into an uninitialized register reserved
specifically for the use of the memory.

In EDIF output for Actel devices, expands netlist to maximize
speed

In EDIF output for Actel devices, expands netlist to minimize
area

Pass Option to preprocessor. This enables you to pass options
in addition to those listed below.

Define preprocessor symbol

Pre-process source only.

pathname to preprocessor include path
Undefine preprocessor symbol

Turn on maximum optimizations
Turn off all optimizations

Turn on optimize optimization
Turn off optimize optimization

Use macros for data paths wider than Width.This option only
has effect for Altera families.

6.2 Compiler target options

The Handel-C compiler can target the simulator or hardware. Hardware targeting is not
available in Nexus PDK. If you are using the command line compiler, you can specify one

of the target options:

-S Target the simulator

-edif Target EDIF 2.0.0 output

-vhdl Target VHDL IEEE 1076.6 output

-verilog Target Verilog IEEE 1364-1995 (default) or 2001 output
-SC Target SystemC 2.0.1 output (if enabled)

Target modifications

You can modify the HDL or EDIF code generated by using further options:

www.celoxica.com

Page 82

DK Design Suite user guide

Celoxica

-syn SynthesisTool Specify the style of VHDL or Verilog output.
SynthesisTool must be one of:

Generic: generates generic code. Use this option if you want to
target a synthesis or simulation tool that is not listed in one of
the other options.

ActiveHDL: generates Aldec Active-HDL-style code for
simulation.

Leonardo: generates Mentor Graphics LeonardoSpectrum-style
code

ModelSim: generates Model Technology ModelSim-style code for
simulation.

Synplify: generates Synplicity Synplify-style code
Precision: generates Mentor Graphics Precision-style code

This option is ignored if not used in conjunction with the -vhdl
or -verilog options.

E.g. handelc -verilog -syn Leonardo MyFile.hcc
-vl0g2001 Target Verilog 2001 (IEEE 1364-2001)
-lutpack Enable technology mapper when generating EDIF output

If you are generating VHDL or Verilog code for simulation with Active-HDL or ModelSim,
you can only use multi-port memories if the ports have the same width and the same
depth.

6.3 Pass options to preprocessor

If you are using the command line compiler, you can use the -cpp option to pass options
to the Handel-C preprocessor.

The following options are available:

Option Description

-D Symbol Define preprocessor symbol

-U Symbol Undefine preprocessor symbol

-E Pre-process source only (stop after pre-processing and don't compile
code).

-1 Pathname Adds Pathname to preprocessor include path

-1, -D and -U can be used directly and do not have to be passed to the preprocessor
with -cpp.

~

www.celoxica.com Page 83

DK Design Suite user guide

Celoxica

Example
handelc -s -cpp -linclude prog.hcc

This adds the directory include to the search path.

6.4 Optimizer options

If you are using the command line compiler, you can use the -0 option to control the
optimization levels. (If you are using the DK GUI, use the Optimization tab in Project
Settings.)

Option Description
-0 Turns on all optimizations
-0- Turns off all optimizations

-O+optimize Turns on optimize optimization
-O-optimize Turns off optimize optimization

The possible values for optimize are:

cr Conditional rewriting optimizations

cse Common sub-expression elimination optimizations

fcc Disable fast carry chain optimizations

high High-level optimizations

Ipm N Generate macros (instead of gates) for common operators above width N

For example, Ipm 8 means that macros will be created for operators that are
more than 8 bits wide.

This option is only enabled for Altera families.

pcse Partitioning before CSE optimizations

rcse Repeated CSE optimizations

rcr Repeated conditional rewriting optimizations

retime Retiming optimizations. (Moves flip-flops from gate inputs to the outputs to

reduce the number of FFs. This is only applied locally and does not take into
account any potential negative effects on timing.)

rewrite Rewriting optimizations

(Further information about these options is available in the description of the
Optimization tab (Project Settings).)

Some versions of Microsoft Visual C++ are non-optimizing. The -0 option will be ignored
by these compilers, and DK simulations will run more slowly.

If no optimizer command line options are specified:

~

www.celoxica.com Page 84

DK Design Suite user guide

Celoxica

e In EDIF, VHDL, Verilog and Generic modes all optimizations are enabled
except for fcc, Ipm and rcr. Enabling rcr can substantially increase
compilation time.

e In Debug mode, no optimizations are enabled. You can only specify high-level
optimization (high) in Debug mode.

¢ In Release mode, only high-level optimization is enabled. You cannot enable
any other optimizations in this mode.

Examples
handelc -0 prog-hcc -edif

Compiles the program prog.hcc with all default optimizations.

handelc -O+rcr prog.hcc -edif

Compiles the program prog.hcc with all default optimizations plus repeated conditional
rewriting.

handelc -O-cse prog.hcc -edif

Compiles the program prog.hcc all default optimizations except for common sub-
expression elimination.

6.5 Compiler debugging options

If you are using the command line compiler, you can use these options to help you debug
Handel-C programs:

-S Target the simulator

-9 Compile with debug information

-e Estimate logic area and depth

-S Detect simultaneous accesses to functions, memory and channels
-w No effect. Reserved for future use.

6.5.1 Targeting the simulator

If you are using the command line compiler, use the -s option to target the simulator.
handelc -s file.hcc

The netlist simulator is no longer available.

If you are using GCC as your backend compiler, you need to use the command line
option G++ if you are targeting the new simulator and GCC if you are targeting the old
simulator (see default simulation command lines).

www.celoxica.com Page 85

DK Design Suite user guide

Celoxica

6.5.2 Detecting simultaneous access to functions, memory and
channels

When you are debugging your code, you can choose whether you want the simulator to
detect simultaneous calls to functions, simultaneous memory accesses and simultaneous
channel accesses.

By default, all of these options are switched on. The detection of simultaneous memory
access may slow down the debugger significantly if you have a lot of rams in your code.

If you are using the GUI, the options are set on the Compiler tab in Project Settings. If
you are using the command line compiler, use the -S option:

-S+parfunc Detection of simultaneous function calls is on.
-S-parfunc Detection of simultaneous function calls is off.
-S+parmem Detection of simultaneous memory accesses is on.
-S-parmem Detection of simultaneous memory accesses is off.
-S+parchan Detection of simultaneous channel accesses is on.

-S-parchan Detection of simultaneous channel accesses is off.

-S+parmem will only detect simultaneous accesses to different addresses within a
memory, not simultaneous accesses to the same address.

6.6 Simulation compilation control options

To control the way that a simulation is compiled, you can pass options to the backend
compiler. (The backend compiler is specified when you install DK.)

-cl Specify the backend compiler command line
-be Pass options to backend compiler

6.6.1 Pass options to command line
If you are using the command line compiler, the -cl"CommandLine" option can be used
to pass options for compiling the code for simulation. Handel-C code is converted into a

temporary C++ file, and this is then compiled by the backend compiler, so that it can run
on a host machine.

~

www.celoxica.com Page 86

DK Design Suite user guide

Celoxica

If you are not using the command-line compiler, the CommandLine option can be passed
to the back-end compiler via the string in the Simulator compilation command line box in the
Linker tab of the Project Settings dialog.

The CommandLine option is a quoted string consisting of the command to be executed by
the compiler. There are various parameters the compiler can provide:

%1 : Name of the temporary C++ source file generated from Handel-C
%2 : .dll output file name
%3 : output file root

%4 : string passed to -be option

Examples

handelc -s file.hcc -cl'g++ -c -02 %1 -o%3.obj"

generates a .cpp file for the simulator (for example, called xyz.cpp) and then runs the
command:

gt+ -c -02 xyz.cpp -ofile.obj

handelc -s -cl'g++ %1 -0o%3.exe %4" -be'"vga.lib" fred.hcc
generates a .cpp file and then runs the following command:

g++ temp.cpp -ofred.exe vga.lib

6.6.2 Pass options to backend compiler

The -be"String" option can be used to pass extra options to the backend compiler.

Handel-C code is converted into a temporary C++ file, and this is then compiled by the
backend compiler, so that it can run or be simulated on a host machine.

The String option is a quoted string that replaces the %4 variable in the command line
used to invoke the backend compiler. This command line may be that defined in the
HANDELC_SIM_COMPILE environment variable or that defined in the -cl build option. If
the %4 variable is not present in the command line, the -be"'String" option will not be
used. No checks are performed on the string value.

Examples
handelc -s aloha.hcc -clI"bill %1 %2 %4 -be''gibbons and apes™

generates a temporary .cpp file for the simulator (for example, xyz. cpp) and then runs
the command:

bill xyz_.cpp aloha.dll gibbons and apes

If the HANDELC_SIM_COMPILE environment variable has been set to cl /LD %1 %3.0bj
%4 -Fec.dll

~

www.celoxica.com Page 87

DK Design Suite user guide

Celoxica

handelc -s driver.hcc -be"vgal.lib"
generates a temporary .cpp file for the simulator (for example, xyz. cpp) and then runs
the command:

cl /LD xyz.cpp driver.obj vgal.lib -Fec.dll

6.7 Environment variables

The Handel-C compiler has three environment variables associated with it.
e HANDELC_SIM_COMPILE is an alternative to the -cl command line option. It is
used to create the simulation file when compiling using the command line.

e CELOXICA DK HOME is the DK install directory. For example, if you install in the
default location, CELOXICA_DK_HOME is C:\Program Files\Celoxica\DK

e The value of HANDELC_ CPPFLAGS is passed as command line options to the
preprocessor each time the compiler is executed.

The DK installation sets the HANDELC CPPFLAGS variable to contain the —C option. The -C
option passes source code comments through to the compiler.

To change the environment variables use the facilities described in the installation
instructions.

Circumstances in which you can use environment variables include:

e Custom build commands

e Command line settings, e.g. cl /Zm1000 /LD /0itybl /GX
/1" %%CELOX1CA_DK_HOME%%\sim\include" /Tp"%1" /Fe"%2" %4 (you need
two sets of "%" as the command is passed through DK and the backend
compiler before being expanded.

e In the Additional Library Path setting on the Linker tab in Project Settings.
Temporarily changing environment variables

You can temporarily alter the value of the variable by typing the following at the
command prompt:

set HANDELC_CPPFLAGS=Command Line Options

For example:
set HANDELC_CPPFLAGS=-C -DDEBUG

www.celoxica.com Page 88

DK Design Suite user guide

Celoxica

7 Simulation and debugging

7.1 Using the simulator

The simulator enables you to test your program without using real hardware. It allows
you to see the state of variables in your program at every clock cycle.

You can view information about the simulation in various windows:
e See the clocks in use and the threads currently running in the Clocks/Threads
window

e See the current function, and what functions were called to reach it, in the Call
Stack window

e Select variables to be displayed in the Watch and Variables windows

You can run code in the simulator in several ways:

¢ Run until the end

¢ Run until you reach the current cursor position

e Run until you reach a user-defined breakpoint

e Step through statements and functions

e Advance through code one execution point at a time
e Pause the simulation

7.1.1 Starting debug and simulation

From the Build menu select Start debug. The Debug menu appears in place of the Build menu.

e Where the code includes multiple threads using separate clocks you need to
select a clock. The first thread associated with that clock becomes the current
thread.

e You can step through the code. Statements that are completed at the end of
the current clock cycle are marked with an arrow.

Alternatively you can advance through code from execution point to execution
point, or use breakpoints to halt the debugger at any selected line in the code.

e You can use the Waveform Analyzer to inspect signals on outputs and
generate signals for inputs

www.celoxica.com Page 89

DK Design Suite user guide

Celoxica

7.1.2 Debug symbols in the editor window

Statements associated with the current clock cycle are marked with arrows. All these
statements execute together. If you single-step or advance through the code, you wiill
see the arrows move.

In the current thread

:C’The yellow arrow marks the current execution point. When you are stepping through
code, it marks the point in the code that will consume a clock cycle on that thread.

=>White arrows mark all other code executed in the current clock cycle in the current
thread. They mark "control logic"; control statements that lead to the execution point
marked by the yellow arrow.

':C}Green arrows mark current function calls. This gives a stack trace for the current
thread.

In other threads

'.The equivalent of yellow, white and green arrows are all marked grey in other threads.
To see them, you must switch to that thread.

Other symbols

® Active breakpoint

O Disabled breakpoint

G Enabled and disabled breakpoints on same line
- Pointer to error and browse results

7.1.3 Selecting a clock

If you are simulating a project with multiple clocks, a Select Clock dialog will pop up asking
you to select which clock to use when you start the simulation.

During simulation the Clocks/Threads window shows all clocks in use. The selected clock
is the one associated with the current thread.

To select a different clock, follow a different thread.

7.1.4 Selecting a thread to follow

In debug the Clocks/Threads window shows all the running threads. The thread currently
followed by the simulator is in bold.

You can change the followed thread in three ways.

~

www.celoxica.com Page 90

DK Design Suite user guide

Celoxica

Selecting a thread in the code editor

1. Click a code line marked with a grey arrow within the thread you want to
follow. (Grey arrows mark execution points in other threads).

2. Right-click the mouse and select Follow Thread from the shortcut menu.

3. If a single thread is active at the code line, the menu option identifies it. If
several threads are active, you can select the thread you want from a
dropdown list. Thread identifiers match those shown in the Clocks/Threads
window.

Setting a breakpoint in the code editor

Set a breakpoint in the thread you want to follow. When the breakpoint is reached, that
thread becomes the current thread.

Selecting a thread in the Clocks/Threads window

Open the Clocks/Threads window, select a thread, right-click and select Follow Thread.

7.1.5 Following function calls in the Call Stack window

The way a function has been called is displayed in the Call Stack window. This shows the
current function at the top of the window, and the uncompleted functions that called it
beneath.

Debug symbols in the Call Stack window

I=E}Yellow arrow marks the current function in the current thread.

'::}Green arrows mark function calls on the stack (showing the path of calls to reach the
current function).

® Breakpoint marker indicates that there is a breakpoint on the line. The breakpoint
marker may be red (enabled), white (disabled) or grey (enabled and disabled on same
line).

7.1.6 Examining variables

During debug you can examine variable values in two windows:
e Watch window (View=Debug windows=>Watch)

e Variables window (View=>Debug windows=>Variables)

By default variables are displayed in decimal. To change the base, right-click in the
selected window and select a new base from the pop-up menu.

You can change the display base of an individual variable using the Handel-C
specification with {base=n}.

~

www.celoxica.com Page 91

DK Design Suite user guide

Celoxica

You can turn off the display of a variable by using the Handel-C specification with {show
= 0}. For example:

int 32 pike with {show = 0};

Arrays and structures are displayed with a + button next to the name. Click on this
button to display individual array elements or structure members.

7.2 Using the debugger

You can use the debug commands to:

e Step through statements and functions

e Advance through every execution point in your code

e Set and remove breakpoints to segment the simulation
e Follow a selected processing thread or clock

e View the clock cycle count

e See how a function has been called

e Examine variables

You can also use the extern ''Language" construct to link to standard C and C++
libraries to use the printf/cout functions and other standard file 1/0 functions.

7.2.1 Generating debug information

When you compile your project in Debug mode, you can choose to generate debug
information. This allows you to step through statements and functions, or to advance one
execution point at a time.

e If you are using the command line compiler, use the —-g option to generate
debug information.

e If you are using the GUI compiler, select Generate Debug information on the General
tab in Project Settings.

7.2.2 Debug project configuration

The default settings for the Debug project configuration are those to enable you to debug
a project.

The Project Settings specific to debug are:

www.celoxica.com Page 92

DK Design Suite user guide

Celoxica

Preprocessor defines the variables DEBUG and SIMULATE. This allows you to set up
the code according to whether you are using the simulator, e.g. use
simulator channels instead of real interfaces.

Compiler Generate Debug and Generate warning boxes checked.
Linker Output format set to Simulator.
Save browse info box checked.

Generate estimation information option (create HTML files) switched
off.

Exclude timing constraints (-notcon) unchecked

Debugger Working directory for debugger set to current (.).
Optimizations High-level optimization switched off.

7.2.3 Stepping through code

In a sequential language such as ANSI-C, you can step through code one line at a time,
and you stop at an execution point. In Handel-C, you step through code one statement,
function or breakpoint at a time. You can use Advance to move through code one line at
a time.

Because Handel-C is a parallel language, there can be multiple execution points. Where a
par statement is found in your code the execution splits into separate threads, one for
each branch of the par statement. The threads will wait until they have all completed
before the main thread of the code can continue after the par block.

When you are debugging you can only follow one thread at a time. The simulator steps
through the thread you are following one statement, function or breakpoint at a time. If
other threads within a parallel block require more clock cycles, these clock cycles will not
be stepped through. The clock cycle count in the Clocks/Threads window increases when
you leave the par block to show the number of clock cycles required by the longest
thread.

Single stepping

To step through your code, select Build>Start Debug>Step Into. You can continue stepping by
pressing F11.

The step that is currently executing is shown by a yellow arrow. If other code in the same
thread is executed in the same clock cycle this is shown by white arrows. You can
advance to this code, but not step to it, as it doesn't take any clock cycles.

In addition to statements that take clock cycles, you can also step to breakpoints or to
function or macros calls. You can choose to Step Into, Step Out of or Step Over functions and
macros.

~

www.celoxica.com Page 93

DK Design Suite user guide

Celoxica

Stepping through code: example

This example illustrates the behaviour of debugger arrows when you are stepping
through your code.

To run the example, open the Debug_arrows.hw workspace in DK by double-clicking it.
The example is in InstallIDir/DK/Examples/Handel-C/ExampleDebug/.

Stepping through the example

1.

2.

Build the project in Debug mode by selecting Build debug_arrows from the Build
menu.

Step into the code by selecting Build>Start Debug>Step Into or pressing F11. Press
F11 again.

The yellow arrow (current execution point) should be at the function call to
blob() and the green arrow should be at the start of the main() function. The
white arrows show other code executed on the same clock cycle.

Open the Clocks/Threads window (View=Debug Windows=Clocks/Threads).

Step over the blob() function by selecting Debug>Step Over or pressing F10.

The yellow arrow should be at the y = 3 statement after the call to the blob()
function. If you had stepped into the function (F11) instead, the yellow arrow
would be within the blob() function. Notice that the number of clock cycles
reported in the Clocks/Threads window is 1.

Press F10 again.
The yellow arrow should be at the first delay statement within the par block,
and the number of clock cycles reported will have increased to 2.

Press F10 again.

The yellow arrow will be at the y = 0 statement.

Note that the number of clock cycles has increased to 4. This is because the
other thread in the par statement takes two clock cycles (two delay
statements), and the current thread cannot continue executing until the
parallel thread has finished.

To exit the simulation, select Debug=>Stop Debugging.

7.2.4 Advancing through code

If you step through your code you will move forward one statement or function at a time.
To move forward a single execution point rather than a complete clock cycle, use the

_..
Advance command l‘ or select Debug>Advance. You must Step Into your code before you
can use the Advance, by pressing F11.

www.celoxica.com Page 94

DK Design Suite user guide

Celoxica

7.2.5 Arrow behaviour during step and advance

When you are stepping or advancing through your code, yellow and white arrows mark
the execution points.

A subset of execution points, which include assignments and other statements that take
clock cycles and function calls, may be stepped over or into. All execution points may be
advanced to.

Step statements

Step statements are statements that take a clock cycle, function calls and any statement
that has a breakpoint set.

When you are stepping through code, a yellow arrow marks the current step statement
and white arrows show the other execution points associated with that step statement.
You can also Advance to any of these steps.

Any assignment (=, ++ , —— , +=, == , *= | Y= , <<=, >>= &=, |=, =)
return(Expression); (If Expression is assigned on return)

Channel ? Variable ;

Channel ! Expression;

releasesema();

delay;

Function()

prialt (...); (Where no default clause coded)

Advance statements

Advance statements are executable statements that do not take any clock cycles.
(Functions and statements that have breakpoints set are special cases. These are treated
as step statements rather than advance statements.)

You cannot step to Advance statements. When you are advancing through code, the
current advance statement is marked by a yellow arrow. When you are stepping through
code, advance statements are shown as white arrows, when associated with the current
step statement.

return;

return(Expression); (If Expression is not assigned on return)
while (Expression){...}

if (Expression){...} else {...}

do {...} while (Expression); (The "do" part is considered the active point rather
than the "while" part)

~

www.celoxica.com Page 95

DK Design Suite user guide

Celoxica

switch (Expression){...}
break;

goto Label;

continue;

prialt (...); (Where a default clause exists)

for loops

for // white arrow for Step, yellow arrow for Advance

(Init; // yellow arrow for assignment on first pass if you are stepping
Test; // no arrow

Iter) //yellow arrow for assignment

{---3

No execution point. Lines ignored by Advance and Step: no arrows
displayed

The following lines of code do not have any execution point. You cannot step or advance
to these lines and you cannot set breakpoints on them.

{---3
par
seq

par | seq (index Base ; index Limit ; index Count) (No true assignments
involved)

All declarations
ifselect

assert

7.2.6 Using breakpoints

Breakpoints give you an alternative to stepping through code.
You can set breakpoints on any line of code that contains an execution point.

When the debugger reaches a breakpoint it pauses until you request it to continue. You
can restart the simulation by selecting Debug>Restart.

If you set breakpoints on statements in a par block, all breakpoints will be hit as you run
through the code, but the order in which they are hit is undefined.

You can carry out more complex actions using the Breakpoints dialog (Edit=Breakpoints).

~

www.celoxica.com Page 96

DK Design Suite user guide

Celoxica

Setting breakpoints

1. Select the line of code where you wish the simulator to pause. To search for
known names, use Edit>Find.

2. Click the Insert/Remove Breakpoint button @
OR

Right-click the mouse and select Insert Breakpoint.
OR
Press F9

Multiple breakpoints on same line

A breakpoint can be active or inactive. You might wish to have two breakpoints on the
same line, set to break according to different conditions, and have one of them active
and one inactive, depending which thread you were following.

You can have multiple breakpoints on the same line by entering the same line twice in
the Edit>=Breakpoints dialog. You can disable a breakpoint by unchecking its box in this
dialog and enable it by checking the box.

Disabling breakpoints

A breakpoint can be active or inactive.
If you wish to keep a breakpoint but not to stop at it:

1. Move the cursor to the line of code where the breakpoint is set.
2. Right-click the mouse.
3. Select Disable Breakpoint.

All breakpoints are listed in the Edit>Breakpoints dialog box. You can also disable a
breakpoint by unchecking its box in this dialog.

Removing breakpoints

e Find the line of code where the breakpoint is set.

e Click the breakpoint button "[EI

OR
Right-click the mouse and select Remove Breakpoint

OR
Open the breakpoints dialog (Edit=Breakpoints), select the breakpoint(s) to be
removed and click Remove.

www.celoxica.com Page 97

DK Design Suite user guide

Celoxica

Breakpoints in macros and inline functions

If you set a breakpoint in an inline function or a macro procedure, the breakpoint will
occur every time that the code is used.

You cannot set a breakpoint in a macro expression.

Breakpoints in replicated code

If you set a breakpoint in replicated code, a breakpoint is set in every copy of the code.
When you step through the code all of these breakpoints are stepped over
simultaneously.

The clock cycle counter in the Clocks/Threads window is not incremented until you have
passed through all the breakpoints set in a single clock cycle.

www.celoxica.com Page 98

DK Design Suite user guide

Celoxica

8 Optimizing code

8.1 Logic estimator

The Handel-C compiler can give information on logic usage and depth to help you
optimize your designs. (Note that this information is based on estimates, since full place
and route is needed to get exact logic and area information.)

Logic estimation information is only available for EDIF builds. You cannot use the Logic
estimator from Nexus PDK.
Using the logic estimator
To generate information about the logic area and depth of your code:
e check the Generate estimation info box on the Linker tab of the Project Settings dialog.
OR

e use the -e option on the command line compiler. For example:
handelc -e -fs -g test.hcc

The information generated is most detailed for builds targeting devices supported by the
Technology Mapper (with the technology mapper enabled).

When you compile your code a set of HTML files will be produced, containing

¢ line by line information on use of resources (e.g. NAND gates, or look-up
tables for mapped-EDIF).

e description of the longest combinational paths in your code.

You can access the information by opening the overview page summary.html in an
Internet browser. summary _html will be placed in the build directory for your project.

8.1.1 Logic area and depth summary

You can view logic area and depth information about your code by opening the file
summary.html in an Internet browser. The file is created in your build directory by the
logic estimator if you have selected the Generate estimation info option.

Area estimation information

e For technology mapped-EDIF: consists of the number of look-up tables, flip-
flops, memory resources and other device-specific logic resources (listed
under "Other").

e For non-mapped EDIF: consists of the number of NAND gates, flip-flops and
memory resources.

~

www.celoxica.com Page 99

DK Design Suite user guide

Celoxica

Each source file listed is linked to more detailed logic area information.

Longest paths summary

summary . html displays estimates of the longest path for each combination of flip-flops
to/from pins, RAMs and flip-flops, pins to/from RAMs and pins, RAMs to RAMs. It also
links to more detailed combinational path information.

8.1.2 Area and delay estimation example

e S By e e R T B o

Black Faonmard Stop Refresh Home Search Fawvortez Histom b il

J Address @ j lﬁ’GD J Links
=

>: Area and delay estimation summary

Area estimation by file Summary of resources
used by each source file

File name LUT FF Mem Other
DAToolsvedfgenWulmul.c 75 35 o 109

Longest paths summary

s Maximum logic delay from flip flops to flip flops: 12 92ns
s Maximum logic delay from flip flops to pins: 1.07ns
s Maximum logic delay from pins to flip flops: 0.63ns

Detailed path information \] A
. Longes

combinational paths

Flease note: All area and delay estimates given here are approximate. For full information
ghout the size and speed of & design, use the appropriate vendor's place and route and
timing analssis softwars.

www.celoxica.com Page 100

DK Design Suite user guide

Celoxica

8.1.3 Information on logic area

The detailed information about area provided by the logic estimator consists of the
number of resources created for each line of your source code. Totals are summarized in
the overview page, summary.html.

For each line of code, the areas that use the greatest resource in that line are highlighted
in colour. Red code provides 75% or more of the maximum, orange code 50 -75% of the
maximum, and blue 25 - 50%. Black code contributes up to 25% of the maximum.

The number of resources used is listed next to each line of code. Resources listed are:

e LUT: look-up tables (mapped-EDIF output only)

e NAND: NAND gates (non-mapped EDIF only)

e FF: Flip flops

e Mem: Memory bits

e Other: device-specific logic elements (mapped-EDIF output only):

e Altera: CARRY_SUM, CARRY
e Xilinx: MuxF5, MuxF6, MuxF7, MuxF8, MuxCY, XORCY, MultAND

www.celoxica.com Page 101

DK Design Suite user guide

Celoxica

Logic area estimation example

>: Area estimation for: D:\Tools\sdfgen\Mul\mul.c
LUT FF Mem Other
i1 volid maini)
1 2 iz i
16 13 unsigned Mulsk, MulsE:
a 14 unsigred Maldd, I-Iul-’-LB.:v\
= Code causing greatest
1 16 while (1) resource use
17 [
ia par
i [
20 Muldd = D.D[7:0]; Code with medium
21 MuldEk = D.D[L15:5]: resource use
22 Muldd = D.D[19:16];
23 MuldB = D.D[23:20]; i \
73 109 24 Result = (Muldk * MuldB) + (0 @ { 11 F Mulsa;
5 1

8.1.4 Information on combinatorial paths and delay

Information on logic delay generated by the logic estimator is summarized on the
overview page, summary.html. This contains a link to more detailed information, where
the longest combinational path is given for the following 9 path types. If that path does
not exist, it is not included:

From flip-flops From pins From RAM

To flip- . . .
flops

To pins - - -
To RAM - - -

For each of the longest paths, there is a list of the lines of source code that contribute to
the path, and a list of resources used by each of these lines.

~

www.celoxica.com Page 102

DK Design Suite user guide -
Celoxica
Logic depth estimation example
>: LO“gESt | 1 set part = "XCV1000-6-BEGSA07;
pathS Tyrpe of Iungest path set family = ¥ilinxVirtex:

Source code

unsigned Result:

flip flops to flip flops.
12.92ns

interface bus_out() DOut({ Result j:

4
A
& interface bus_inf(unsigned 24 D) D():
7
7
=]

z2et clock = external;

Code lines in longest path

mul.c, Line: 14

0: DTyped: 1.06ns 11 woid main()

mul.c, Line: 24 ¢4—— iz

1-LUT: 0.60ns 13 unzigned Muldd, MulE:

2 ¥ilinxMuxCY: 0.60ns]

3 WilinkXorCY: 0.41ns 14 unsigned Huldh, HualdB:

4: LUT: 0.60ns 14

5 ¥ilinkMuxCY: 0.60ns |18 while(l)

B LUT: 0.60ns 17 /

70 LUT: 0.60ns

a: ¥ilinxMuxCY: 0.60ns Resources in path

9 XilinkxorCy: 0.41ns -€— and de|al.’r5 bhetween

10: LUT: 0.60ns them mlsh = D.D[7:0]:
11: RilinxhuxCY: 0.60ns 5 WlBE = D.D[15:8];:
12 KilingkorCY: 0.41ns

13 LUT: 0.E0ns 22 Muldd = D.D[19:16]:
14: FilinxbiuxCy: 0.60ns &3 Muldk = D.D[23:20];
15 KilingsorCY: 0.41ns 24 Fesult = (MulSk * MulsE) + (0 @ |
16: LUT: 0.60ns 25 !

17 KilinghuxCY: 0.60ns

8.2 Optimizing code example

The optimizing code example is based on a windowing program. Windowing is a
technique which can be used to improve the results of the discrete Fourier transform. The
program reads in 15 samples at a time, and multiplies them by a symmetrical window.

The original program is optimized to run in software. The example shows how the
program can be optimized to run in hardware in two stages. The logic estimator allows
you to view the effects of each of the optimization stages.

~

www.celoxica.com Page 103

DK Design Suite user guide

Celoxica

Each version of the program is contained in a different project (Optl, Opt2 and Opt3)
within the same workspace: DK\Examples\Handel-C\ExampleOpt\optexample.hw.

Double-click on the workspace file to open the example in DK. You need to set the
example to build in EDIF. You can only target EDIF from the full version of DK, not from
Nexus PDK.

8.2.1 Optimizing code example: original program

The original program is in optexamplel.hcc. The program applies a series of
multiplications to input data (this is the windowing technique). The multiplications are in
a while loop which runs as long as data is fed into it.

The code is written with the windowing loop unrolled (each multiplication step is in
sequence) as this can be efficient for software implementation. However, in hardware,
each of the 15 calls to the MULT macro will instantiate a separate multiplier, which is not
area efficient.

Note that, apart from WindowParameters[7], each window parameter is used twice. The
Handel-C compiler identifies this and only builds the logic for each different multiplier
once. This is then shared for each of the two multiplications.

Build the original program (Optl project) and view logic estimation information. Then
look at the next version of program in Opt2.

8.2.2 Building the optimizing code example

If you have the full version of DK, you can build each of the versions of the optimizing
code example, and view the results generated by the logic estimator by following the
steps below. You cannot target EDIF or use the logic estimator if you have Nexus PDK.

Opening the example and checking project settings
1. Open the workspace file (Instal IDir\DK\Examples\Handel-
C\ExampleOpt\optexample.hw) in DK by double-clicking on it.
2. Select the project you want to build: Project>Set Active Project.

3. Set the build configuration to EDIF: select Build>Set Active Configuration, then click
on EDIF below the project you want to build and press OK.

4. Note that
e the Generate estimation info and Use Technology mapper options are selected on the
Linker tab in Project Settings.

e most of the compiler optimizations are selected on the Optimizations tab in
Project Settings.

5. To view the files in the workspace, check that you are in file view and click on
the + sign to the left of the chip icon.

~

www.celoxica.com Page 104

DK Design Suite user guide

Celoxica

6. To examine the code, double-click on the relevant Handel-C files in the
workspace pane.

Building the example

1. Build the example by pressing F7.
You will see description of the compiler optimization steps in the bottom left-
hand corner of the DK window. This will say Ready when the build has
completed.

Examining the information produced by the Logic estimator

1. Browse to the EDIF directory for the project you have built. For example, if
you have built Optl1, browse to Instal IDir\DK\Examples\Handel -
C\OptExample\Opt1\EDIF

2. The EDIF directory will contain a number of HTML files. Open summary._html in
an Internet browser.
This will show you an area and delay estimation summary for the project, with
links to more detailed information.

8.2.3 Optimizing code example: stage 1

The second stage in optimizing the example is in optexample2.hcc.

Optimizations

In the Opt2 project, the code has been optimized by using a shared function for the
multiplier:

unsigned 32 Mult(unsigned 24 A, unsigned 8 B)

{
return (0 @ A) * (0 @ B);

}

Results of optimization

The shared multiplier results in considerably smaller hardware. However, there is
considerable logic associated with the function calls, as the data from each of the 15 calls
has to be multiplexed to the single multiplier. This also has an associated speed penalty
as a multiplexor has some delay associated with it.

Viewing the results

Build optexample2.hcc (Opt2 project).

Open the summary.html page for this project and for the previous project (Optl) to
compare the delay and estimation information.

You should see the following changes:

~

www.celoxica.com Page 105

DK Design Suite user guide

Celoxica

e the number of look-up tables (LUT) has decreased
¢ the maximum logic delay from flip-flop to flip-flop has increased slightly

Then look at the next version of program in Opt3.

8.2.4 Optimizing code example: stage 2
The second stage in optimizing the example is in optexample3.hcc.

Optimizations

In the Opt3 project the main while loop is rewritten so that the multiply operation is only
called from a single point in the code (this is called 'loop rolling"):

while(1)
{
par
{
DataWindowed = (0O @ DatalnReg) * (0 @ WindowCoefficient);
}
}

The multiply operation takes data from DatalnReg and WindowCoefficient and places it
in DataWindowed.

The remaining code in the par statement makes sure that WindowCoefficient has the
correct coefficients on each step.

par

{
WindowCoefficient = WindowParameters[Index];
DataWindowed = (0O @ DatalnReg) * (0 @ WindowCoefficient);
Index += Direction ? -1 : 1;
if (Direction == 0 && Index == 6) Direction = 1;
else if (Direction == 1 && Index == 1) Direction = 0;

}

The window coefficients are stored in a dynamically indexed ROM:

static rom unsigned 8 WindowParameters[8] =

{
0, 13, 48, 99, 156, 207, 242, 255,
3

This is an efficient storage mechanism for relatively small numbers of values on Xilinx
devices.

~

www.celoxica.com Page 106

DK Design Suite user guide

Celoxica

Results

The hardware for the final version of the windowing program is smaller and faster than
either of the previous versions.

Viewing the results
Build optexample3.hcc (Opt3 project).

Open the summary.html page for this project and for the previous projects (Opt2 and
Optl) to compare the delay and estimation information.

You should see the following changes:
e the number of look-up tables (LUT) has decreased (less than for Opt2 and
Optl)

e there are now some memory bits (Mem), due to putting the window
coefficients in ROM

¢ the maximum logic delay from flip-flop to flip-flop has decreased and is less
than that for Opt2 and Optl

www.celoxica.com Page 107

DK Design Suite user guide

Celoxica

9 Targeting hardware

9.1 Targeting a particular synthesis tool

You need to specify an output style for VHDL or Verilog output. This enables the compiler
to generate code that uses the features of the selected synthesis/simulation tool.

1. In the Project Settings dialog, ensure that the mode is VHDL or Verilog.
2. Select the Linker tab.

3. In the Synthesis tool pull-down list, select the appropriate tool:
Aldec Active-HDL (used for simulation)
Generic
Mentor Graphics LeonardoSpectrum
Mentor Graphics Precision
Model Technology ModelSim (used for simulation)

Synplicity Synplify

Choose Generic if you want to use a synthesis tool which is not listed. Choose Active-HDL
or ModelSim if you want to simulate your code.

If you are using the command line compiler, use the -syn SynthesisTool option.

If you are generating VHDL or Verilog code for simulation with Active-HDL or ModelSim,
you can only use multi-port memories if the ports have the same width and the same
depth.

9.2 ALU mapping

Some FPGA devices possess embedded ALU primitives, which the compiler has the ability
to target automatically. Rather than leave it up to the user to specify where special ALU
units should be used, the compiler intelligently uses them where they will provide the
most improvement in performance over the equivalent logic.

Enabling mapping to ALUs

To turn ALU mapping on, check the Enable mapping to ALUs box on the Synthesis tab in
Project Settings.

If you are using the command-line compiler, use the -N option:

-N+alumap enable ALU mapping (default)
-N-alumap disable ALU mapping

www.celoxica.com Page 108

DK Design Suite user guide

Celoxica

Limiting the number of mapped ALUs

The maximum number of ALUs of a specific type that the compiler targets can be set.
This is useful if not all ALUs on the device are available for a design. To limit the number
of mapped ALUs, choose an ALU type from the Limit ALUs of type: box and enter the
maximum number that the compiler can target.

From the command line, use the -alulimit ALUType=Limit option.

E.g. handelc -edif -f XilinxVirtexll -p xc2v2000bg456-5 -alulimit
MULT18x18=100

Supported ALU primitives

Currently, the following ALU primitives and configurations are supported:

Family ALU resource Supported Configurations
Xilinx Virtex-11 MULT18X18 Simple multiplier
Xilinx Virtex-11 Pro MULT18X18 Simple multiplier
Xilinx Virtex-11 Pro X MULT18X18 Simple multiplier
Xilinx Virtex-4 DSP48 Simple multiplier
Xilinx Spartan 3 MULT18X18 Simple multiplier
Altera Cyclone 11 CYCLONEII_DSP Simple multiplier
Altera Stratix STRATIX_DSP Simple multiplier
Altera Stratix GX STRATIX_DSP Simple multiplier
Altera Stratix |1 STRATIXII_DSP Simple multiplier

SUPPORTED ALU PRIMITIVES AND CONFIGURATIONS PER FAMILY

9.3 Technology mapping

The DK Technology Mapper performs technology mapping of general logic into device-
specific logic blocks.

Technology mapping is available for EDIF output for the following devices:

e Actel: ProASIC and ProASIC+

e Altera: Apex 20K, 20KE and 20KC, Apex Il, Excalibur, Cyclone, Cyclone 11,
Stratix, Stratix GX, Stratix Il

e Xilinx: Virtex, VirtexE, Virtex-11, Virtex-11 Pro, Virtex-1l Pro X, Virtex-4,
Spartan-I11, Spartan-l1E, Spartan-3

~

www.celoxica.com Page 109

DK Design Suite user guide

Celoxica

Creating technology mapped EDIF
To create mapped-EDIF:

e Tick the Enable technology mapper option on the Synthesis tab in Project Settings.
OR

e Use the -lutpack option in the command-line compiler

If you have created a project for an Actel device by selecting File=New, and then basing
your project on one of the Actel chips listed, technology mapping is on by default. In all
other circumstances, it is off by default.

The Handel-C compiler can generate an estimate of the number of look-up tables and
other resources that will be used by the mapped-EDIF, using the logic estimator.

9.4 Retiming

The retiming option moves flip-flops around in the circuit to try to meet the clock period
specified with the rate specification in the set clock statement for each main function.

It preserves:

e timing for logic between clock domains
e timing between flip-flops and external interfaces
o flip-flops tagged with the retime specification.

It moves:

o flip-flops in other parts of the circuit until the respective clock periods are met.

o flip-flops are then moved around again to minimize their number in the circuit,
whilst conserving the specified clock periods.

Retiming is currently only available for Altera and Xilinx devices which are supported by
the Technology Mapper. Re-timing is enabled by default for EDIF output for Xilinx
devices, but not for Altera devices.

Enabling retiming
To enable retiming:
e select the Enable retiming option on the Synthesis tab in Project Settings
or

e use the -retime option with the command-line compiler.

You can only use re-timing for EDIF output, and you must also select the Technology
Mapper.

www.celoxica.com Page 110

DK Design Suite user guide

Celoxica

If you select retiming, but have not specified a rate in your clock statement, you
will get a warning when you compile your code, and retiming will not take place.

To prevent flip-flops in a circuit being moved by the retimer, use the retime specification.

9.4.1 How retiming works

Retiming is a transformation that balances the registers in a circuit in order to achieve a
specified clock rate whilst minimizing the number of flip-flops required for that circuit.

Retiming allows the user to write Handel-C designs in a simpler style, without having to
consider balancing the logic depth of a design. Retiming can move registers to places not
accessible when writing Handel-C, e.g., inside multipliers and dividers built from logic.

It should no longer always be necessary to replace the Handel-C '*' and '/’ operators by
pipelined EDIF black boxes when high clock rates are required.

How retiming reduces delay

In the circuit shown in Figure 1 the maximum logic delay is three logic levels.

:__F_'F_,—n- LLIT4

- e [| Lum

@__:_’_:_'_: a
BEE LiT4 LUT4
F-'FF-FF
®-LF_F__I_* & | Lms | e
EL L | & -
@"':":"’:
L | Luma

FIGURE 1

www.celoxica.com Page 111

DK Design Suite user guide

Celoxica

Figure 2 shows the circuit after retiming for minimum delay. The queues of input flip
flops (the slack in the circuit) have been moved forward through the LUTs. This
minimizes the logic delay whilst retaining the behaviour of the circuit. This retimed circuit
has 1/3 the maximum logic delay of the original and thus can run at three times the
clock rate.

= LLTa

8 1|E|_,_’ LLT4
LLIT4 LUT4 ’_l—. @
ELE = —

LLITdJ_EP' &
]
P

==
fa

??Fﬁ’@?

FIGURE 2

Speed improvements from using retiming

The effect retiming will have on any given design depends on

¢ how well-balanced the flip-flops are in the initial circuit
e whether there are sufficient excess flip-flops to improve the pipelining.

Because of this it is hard to predict the results. The example below shows a small
program compiled with different synthesis options and different levels of pipelining.

Example program

The example calculates the square of the distance of a point from the origin

set clock = external with { rate = 40 };
// Number of pipeline stages

#define PS 4

void main()

interface bus_in(unsigned 32 Aln) AIn(Q);
interface bus_in(unsigned 32 Bin) BIn(Q);

unsigned 32 Result;

www.celoxica.com Page 112

DK Design Suite user guide

Celoxica

// Array of pipeline registers generating slack in the circuit

unsigned AReg[PS];
unsigned BReg[PS];

interface bus_out() ResOut(Result);
while(1)
par
{
//read current (X, y) point into the array

AReg[0] = AlIn.Aln;

BReg[0]

BIn.BIn;

// move results through pipeline

par (1 = 1; i < PS; i++)

{
AReg[1]
BReg[i]
}

Result = (AReg[PS-1] * AReg[PS-1]) +
(BReg[PS-1] * BReg[PS-1]);

AReg[i1-1];
BReg[i-1];

}

Xilinx place and route results
P&R with Xilinx ISE 6.1.02i for Spartanll part string "xc2s200fg256-5'

Test PS Target Clock Number Number
Clock Rate of LUTs of FFs
Rate achieved
(Mhz)
Without retiming 4 34 34.3 1119 98
Retiming 4 70 70.1 1077 825
Retiming 12 92 92.3 1520 1923

P&R with Xilinx ISE 6.1.02i for Virtexll part string 'xc2v1000bg575-4" .

www.celoxica.com Page 113

DK Design Suite user guide

Celoxica

This includes place and route runtime on a 2.4GHz Intel P4 desktop (Although DK will
have a longer run-time, this is often balanced by the reduction in time to place and
route.)

Test PS Target Clock Rate Number of Number of P&R runtime
Clock Rate achieved LUTs FFs
(Mhz) (Mhz)

Without retiming 4 45 45.4 1087 98 20 mins

With retiming 4 56 56.2 1087 259 28 secs

With retiming 4 100 100.2 1086 889 64 secs

With retiming 8 150 150.3 1489 2541 12 mins

For a circuit designed with retiming in mind, the clock frequency gains can be large.

In the case of an existing design the achieved speed-up varies considerably and depends
on the configuration of the underlying circuit, and specifically how much slack there is in
the circuit. Notice that as the speed of the design goes up, the number of flip-flops (FFs)
required also increases as they are moved from the inputs of the arithmetic operators
through into the body of the logic.

Increase in flip-flops after retiming

Retiming tends to increase the number of flipflops in a circuit as it changes the clock
rate. The diagrams below show a noticeable size increase in a circuit implementing a 4
bit adder before and after retiming.

www.celoxica.com Page 114

DK Design Suite user guide

Celoxica

As FPGAs are rich in flipflops (generally with one available per LUT) this should not be a
problem.

D_

3% | O HHEHHHEE
1D

o

D | R REE

C[‘JD

CED

J]}‘:) PHHHHHE

1 O—

?G

P

www.celoxica.com Page 115

DK Design Suite user guide

Celoxica

FOUR-BIT ADDER BEFORE RETIMING

) I

)
]
B
L I 5
o 4DJB—D)
>

==

D%‘

=T

"B HHHIRE

FOUR-BIT ADDER AFTER RETIMING

www.celoxica.com Page 116

DK Design Suite user guide

Celoxica

Limitations of retiming

Although having insufficient pipeline registers is the most common issue constraining the
upper speed of a design there are also a number of other restrictions that apply to
retiming moves that can affect the final clock rate of a design.

e Flips-flops on every input or output
e Flip-flops all of the same class (share reset, clock and clock-enable wires)
e Flip-flops for initialised or uninitiliased variables

Flips-flops on every input or output

There must be a flip-flop on every input of a gate for a forward move, or every output of
a gate for a backward move.

Retiming cannot create or destroy layers of registers, and does not change the
functionality of the circuit.

Retiming can move flip-flops forwards or backwards through a gate, but only if there is a
flip-flop on every input (for a forward move) or output (for a backward move).

LuT4

-

CIRCUIT WITH FORWARD MOVE NOT POSSIBLE

The circuit above cannot move the flip-flops forward, as one input lacks a flip-flop.

LUT4
&

I

CIRCUIT WITH BACKWARD MOVE NOT POSSIBLE

This circuit shows a LUT where a backward move is not possible due to one side of the
fanout lacking a flip-flop.

~

www.celoxica.com Page 117

DK Design Suite user guide

Celoxica

Flip-flops all of the same class

For a layer of FFs to be moved through a gate, they must all be of the same class.

A retiming move is only valid if the layers of flip-flops to be moved share the same clock-
enable, reset and clock wires. Such flip-flops are said to be of the same class and any
moves which would violate this class constraint are not allowed.

Flip-flops for initialized or uninitiliazed variables

Initialized variables in your Handel-C can restrict the retiming moves available.

Registers in a Handel-C circuit can be initialized or uninitialized depending on how they
are declared.

unsigned 4 a; // Uninitialized

static unsigned b = 13; // Initialized

If a register is declared as initialized, then when the flip-flops it is composed of are
moved during retiming the resultant circuit must have the same initial state.

Although initial states can always be computed when moving flip-flops forward, it is not
always possible to compute an initial state after a backward move. Thus some backward
moves are unavailable and this can affect the maximum available clock rate.

If a register is not initialized you cannot assume that it will be zero on startup. This
is particularly true after retiming, so you should always explicitly initialize variables that
must be zero or risk your circuit failing to work as expected.

Retiming initialization examples

www.celoxica.com Page 118

DK Design Suite user guide

Celoxica

Retiming initialization examples
Example: moving an initialised flip-flop forward

In the example below a layer of flip-flops are moved forward through a LUT configured as
an AND gate. On startup the output of the LUT will be zero (as the function represented
is an AND gate, and not all the input flip-flops are initialised to one). To preserve the
initial state when the flip-flops are moved forward, the new flip-flop on the output of the
LUT must be initialized to zero.

LUT4

Ry

l Forward Retime
LLT4
& ‘l_-EI_

MOVING A FLIP-FLOP FORWARD PRESERVING INITIAL RESULT

Example: moving a single initialised flip-flop backward

After a layer of flip-flops is moved backwards through a gate there can be several
possible input flip-flop configurations.

www.celoxica.com Page 119

DK Design Suite user guide

Celoxica

In the case below a zero initialized flip-flop is moved back through a four input AND gate,
there are 15 possible input combinations that will produce a zero output. DK can combine
these combinations to produce uninitialized flip-flops (represented by an X as an
initializer) that can help the retiming later.

LLT4
. LH_

l Bacloward Retime

-

L
_—
—_—
—_—
_—

—_— i

—° LLT4

] & _l_"
—_—

MOVING FLIP-FLOPS BACKWARDS TO PARTIALLY UNINITIALIZED STATE

Example: possible and impossible backward moves

1 —m
™ LuT4
I -
— =
& «0 .

FAN-OUT INITIALIZED TO OPPOSITE VALUES CANNOT BE MOVED BACK
The diagram above shows two flip-flops on a fanout of a LUT with opposite initializers. In

this case it is not possible to make a backwards move, as no combination of FFs on the
LUT input can result in two different outputs.

~

www.celoxica.com Page 120

DK Design Suite user guide

Celoxica

The diagram below shows the same circuit with one of the flip-flops uninitialised. It can
be set to the value of its twin on the fanout. The retiming is possible and a layer of input
flip-flops will be chosen to ensure that the LUT output is ‘0’ on startup. being
simultaneously present on the single LUT output.

e
™ LuT4
I -
.
& «{0 .

SEMI-INITIALIZED FANOUT CAN BE MOVED BACK

In DK if a register is not initialised you cannot assume that it will be zero on startup.
This is particularly true after retiming, so you should always explicitly initialise variables
that must be zero or risk your circuit failing to work as expected.

Retiming interactions with block RAMs and DSP blocks
Retiming cannot move gates through Block RAMs and DSP blocks.

Block RAMs

Block RAMs are not combinational elements and there is no path delay through them.
They are considered as sequential start and end points in a circuit but cannot be
moved.The flip-flops in a circuit will be moved around them in an attempt to balance the
logic delays.

www.celoxica.com Page 121

DK Design Suite user guide

Celoxica

If the longest path in a design is between two Block RAMs it is possible that retiming will
not be able to achieve a desired clock rate. In this case consider manually moving the
FFs in your design to the other side of the Block RAMs so that retiming can balance the
circuit properly (as shown in the example below).

Cnh twwo FF=s available to balance
multiphy accumul ate

j?
L
[==]
1
[»=]
;
==

Faur FFs availabla to balance multiply
accumulate, zame semantics as abowe

ot = [
o EaRiONS:
O

FLIP-FLOPS MOVED MANUALLY

www.celoxica.com Page 122

DK Design Suite user guide

Celoxica

DSP blocks

DSP blocks frequently have combinational paths through them. Although DK cannot
move FFs through the DSP blocks it is able to balance FFs around the blocks to minimise
the overall circuit delay.

10n=

DSP CIRCUIT WITH MAXIMUM DELAY OF 28NS

The figure below shows the circuit after retiming, in which the maximum delay is now
10ns.

www.celoxica.com Page 123

DK Design Suite user guide

Celoxica

This has been achieved by moving flip-flops around the DSP block.
10n=
_—

[-~ |

O
O

DSP CIRCUIT AFTER RETIMING WITH MAXIMUM DELAY OF 10NS

[-~ |

Retiming between clock domains

Retiming locks all flip-flops on edges between clock domains in order to preserve the
asynchronous behaviour of the circuit.

; LUT4 .
| PR WL B
- . _| LLT4 LLT4
_ _ ___ I p——
: LLITd_l__:_I_:_l_: [& A
I .

CIRCUIT WITH FLIP-FLOPS IN TWO DIFFERENT CLOCK DOMAINS

www.celoxica.com Page 124

DK Design Suite user guide

Celoxica

The circuit above shows flip-flops in two different clock domains (represented by two
different colours). The diagram below shows the circuit with the flip-flops between
domains locked (coloured red) and therefore unmovable by retiming.

FFslocked to prevent movements whic h
may change the asynchronous behaviour

LuT4
.
&
LuTA LUTa
I
LUT4 I I I | & &
&

LOCKED FLIP-FLOPS BETWEEN CLOCK DOMAINS

I?

Retiming around interfaces

Retiming locks a layer of flip-flops around interfaces to prevent timing to peripherals
being changed. The closest layer of flip-flops to an interface are locked.

LuT4

& | LLT4
Luma LUT4 I '
& | LLT4 & @

Luma

e
I
==
¥
S

1 [

-

22222

FLIP-FLOPS LOCKED DIRECTLY ADJACENT TO INTERFACE

www.celoxica.com Page 125

DK Design Suite user guide

Celoxica

The flip-flops are prevented from moving in order to preserve the asynchronous timing
between a Handel-C design and any peripherals or external black-box components with
which it is communicating.

e LuTa

B &] LUT4

; 2

T LUT4 LUT4

F__I_" s | LuT4 _I_' 2
5

FLIP-FLOPS LOCKED WITH LOGIC SEPARATING THEM FROM INTERFACE

Retiming clock period accuracy

DK has a comprehensive model of the delays for all combinational elements that can be
created in a circuit. It also has a model of the routing delays such that the delay of an
interconnection between circuit elements is approximated as a function of the size of the
fanout. However this routing model is only approximate as the true routing delay of a
circuit cannot be known until after place and route. As a result the retiming cannot
always know the exact speed of a design.

The routing model becomes less accurate mainly when a target device is almost full or
when there are some very high fanout nets but under normal circumstances is fairly
accurate.

Turning off retiming selectively

Retiming can be disabled on a per-clock-domain basis, or on a per- register basis by
adding the spec retime = O to the appropriate source line as shown below:

// No registers in this clock domain will be moved
set clock = external with { retime = 0, rate = 100 };
// None of the FFs associated with this register will be moved

unsigned 64 AReg with { retime = 0 };

Retiming can be turned off on a per-clock-domain basis to speed up the compilation of a
circuit for instance when a certain domain already runs at the desired clock rate,or when
a domain achieves the desired clock period after retiming and that domain is not being

~

www.celoxica.com Page 126

DK Design Suite user guide

Celoxica

changed in ongoing development (although retiming will need to be enabled for that
domain for a release build).

Turning off retiming on individual registers may sometimes be required near interfaces. If
there are two adjacent FFs on an input interface to prevent metastability the default
behaviour of the compiler is to lock only the closest allowing the second to be moved
through the logic and the metastability resolver to be broken. In this case the second can
be made immovable with the retime = 0 specification and the circuit behaviour
preserved.

9.5 Optimizing arithmetic hardware in Actel
devices

If you are targeting Actel ProASIC or ProASIC+ devices, you can optimize arithmetic
hardware for area or for speed in EDIF output from your Handel-C code.

In the DK GUI, open the Synthesis tab in Project Settings (you need to select a file in the
left pane to see this tab). In the Expand netlist for: box, choose Area (to minimize area) or
Speed (to maximize speed). The default setting is Speed.

If you are using the command-line compiler, use the -N option:

-N+area minimizes area
-N+speed maximizes speed

The area and speed settings affect adders, subtractors, multipliers and dividers in Actel
devices. They have no effect for Altera and Xilinx devices.

9.6 Targeting hardware via EDIF

To target hardware via EDIF, you set up your project to target EDIF using the Build>Set
Active Configuration command. This compiles directly to an .edf file which can be passed to
your place and route tools. You cannot compile Handel-C to EDIF from Nexus PDK.

9.6.1 EDIF block and net names

Named nets

Named nets are assigned a specific name often corresponding to a variable or signal in
Handel-C. For example, suppose Handel-C declares the following variable:

unsigned 8 MyVar;

then the EDIF will contain 8 nets named MyVar_0 to MyVar_7. There are other named
nets that are generated internally by the DK and do not refer back to constructs in the

~

www.celoxica.com Page 127

DK Design Suite user guide

Celoxica

Handel-C source. If a net is not associated with a name, its referred to as unnamed and
it will take the format described below. Furthermore if two named nets take the same
name, they will be output as if they are unnamed in order to distinguish between them.

Nets connected to Actel/Altera external port interfaces and Xilinx pad blocks (external
pins) take the name of the corresponding Handel-C interface:

{PADIN | PADOUT | PADTS} Name_ portName_lndex
For example,
interface bus_out() myBus(unsigned 8 out = X);

will create nets, named PADOUT_myBus_out O to PADOUT myBus_out 7.

Unnamed nets
Unnamed nets take this format:

W [G][T]1d_filename_lineNumber [_functionName] [_netName]

where:

w Indicates that the current name is for a net (as opposed to a block).

G Optional. Indicates that a net is global and crosses file or function
boundaries.

T Optional. Indicates that the block or net is at the top level of the
design.

Id The unique Id for the net within its name scope.

filename The name of the file containing the source code from which the
block/net was generated. It forms part of the name scope for the
block/net.

I ineNumber The line number in the source code from which the net was generated.

functionName The name of the function containing the source code from which the
net was generated. It forms part of the name scope for the net. This
may be missing as nets can result from code not belonging to any
function.

netName The name of the net. This is only present when there are other nets

with this name.

Mixing old and new versions of code (by linking in libraries or object files) may mean that
everything has a single name scope.

Examples:

WGT1_s4c_4 Clocklnput
WGT9_s4c_26_ Cforkln
WGT6_s4c_28_ SeqChain
WGT8_s4c_29 UnaryOpOut_I_0O
WGT7_s4c_29 UnaryOpOut_1_1
W1 sd4c_25 main

www.celoxica.com Page 128

DK Design Suite user guide

Celoxica

WT1l _s4c 4

W1l s4c 20 x Out 1 O
W10_s4c 20 _x Out_1_1

Blocks

Names of blocks take this format:

B Id_filename_lineNumber [_functionName] [_blockType]

where:

B Indicates that the current name is for a block (as opposed to a net).

Id The unique Id for the block within its name scope.

filename The name of the file containing the source code from which the block
was generated. It forms part of the name scope for the block.

I ineNumber The line number in the source code from which the block was
generated.

functionName The name of the function containing the source code from which the
block was generated. It forms part of the name scope for the block.
This may be missing as blocks can result from code not belonging to
any function.

blockType A string identifying the type of block in question (i.e. whether it is a

register, an AND gate, a pad, etc).

Mixing old and new versions of code (by linking in libraries or object files) may mean that
everything has a single name scope.

Examples:

BT2_s4c_4_CLKBUF
B1_s4c_17_DTYPEO

B5 s4c_17_OR

B8 s4c_ 19 IBUF
B22_s4c_22_BRAM

B1 s4c_ 25 main_DTYPEL
B5 s4c_29 main_NOT

Interfaces

The names of Actel/Altera external port interfaces and Xilinx pad blocks (external pins)
take the following format:

{PADIN | PADOUT | PADTS} filename_lineNumber [_functionName]
_Name_portName_Index

Examples:
PADIN_s4c_4 ClockInPin_0O

PADIN_s4c_19 158 in_1
PADIN_s4c_19 159 in 0

www.celoxica.com Page 129

DK Design Suite user guide

Celoxica

PADOUT_s4c_20_163 ParamO_1
PADOUT_s4c_20_ 164 ParamO_0O

However, if the pins of the interface are constrained using the data specification, the port
interfaces and blocks take their name from the pin location.

For example,

interface bus_out() myBus(unsigned 8 out = x) with {data = {"PO", "P1",
"p2', "P3™, "P4"™, “P5", "P6", "P7"}};

will create ports or pad blocks, named PO to P7.

9.6.2 Specifying wire name format in EDIF

You can specify the format of floating wire names in EDIF using the Handel-C busformat
specification.

This allows you to use the formats:

BI B 1 B[] B(1) B<I>

where B represents the bus name, and 1 the wire number.
To specify the format of bus wire names use

"B B[N:0]

Example

interface port_in(int 4 signals_to HC with
{busformat="B[I1]"}) read();

This code would produce wires:

signals_to HC[O0]
signals_to_HC[1]
signals_to HC[2]
signals_to HC[3]

9.6.3 Setting up place and route tools

The Altera EDIF compiler requires a library-mapping file. This is supplied as
handelc. Imf.

If you are targeting Actel devices, you need to import the timing constraints file
generated by DK into Actel Designer.

www.celoxica.com Page 130

DK Design Suite user guide

Celoxica

9.6.4 Preparing MaxPlus 11 to to compile Handel-C EDIF

NOo Ok oDNPRE

Start MaxPlus I1.

Open MaxPlus lI=Compiler.

Open the Handel-C-generated EDIF netlist, and any other design files.
With the compiler selected, select Interfaces=>EDIF Netlist Reader Settings.

In the dialog box, specify Vendor as Custom.

Click the Customize>> button.

Select the LMF #1 radio button. Set up the path name for the handelc. ImfF file
(installed in Instal IDir\DK\LmT).

9.6.5 Preparing Quartus to compile Handel-C EDIF

You need to set up Quartus in different ways depending on whether you are using
version 2.1 (or older) or 2.2 (or newer), and whether you have compiled your EDIF using
DK, or used a synthesis tool to convert DK VHDL or Verilog to EDIF.

DK EDIF, Quartus version 2.2 (or newer)

1.

Start Quartus.

Create or open the project in which you want to compile the netlist generated
by Handel-C.

Add the Handel-C-generated EDIF netlist, and any other design files, to the
project.

Select the Assignments>EDA Tool Settings menu command.
In the EDA Tool Setting pane, select Design entry/synthesis as the Tool Type.
Select Custom as the Tool name from the drop-down list.

Set the Library Mapping File to specify the handelc. Imf file installed in
Instal IDir\DK\LmF.

Apply the TCL script that was generated by DK when compiling the Handel-C
code to EDIF. The script file has the same file name as the compiled file.

To apply the script:

Enter the following command in the Quartus console window:
source hcedif.tcl
where hcedif is the name of the file compiled to EDIF.

OR

Select the Tools>Tcl scripts. Expand the Projects folder, select the TCL file to run
and click Run.

(The TCL files in the Projects folder will be those in the same directory as your
EDIF files for the project).

~

www.celoxica.com Page 131

DK Design Suite user guide

Celoxica

You can now do the placing and routing.

DK EDIF, Quartus version 2.1 (or older)

1. Start Quartus.

2. Create or open the project in which you want to compile the netlist generated
by Handel-C.

3. Add the Handel-C-generated EDIF netlist, and any other design files, to the
project.

4. Select the Project>EDA Tool Settings menu command.

5. In the dialog box, use the pull-down list to set Custom as the Design entry/synthesis
tool.

6. Click Settings...

7. Set the Library Mapping File to specify the handelc. Imf file installed in
Instal IDi r\DK\LmT.

8. Apply the TCL script that was generated by DK when compiling the Handel-C
code to EDIF. The script file has the same file name as the compiled file.

9. To apply the script:

Enter the following command in the Quartus console window:
source hcedif.tcl
where hcediT is the name of the file compiled to EDIF.

OR
Select the Tools>Run script option and specify the TCL file.

You can now do the placing and routing.

DK HDL converted to EDIF using a synthesis tool

If you use DK to generate VHDL or Verilog output, and then use a synthesis tool such as
LeonardoSpectrum to compile this to EDIF, you need to select the 'Power-Up Don't Care'
option in Quartus (v2.1 or v2.2):

If you are using the command line:

e In the Tcl console window type:
project add_assignment “” 7 7 “” AL LOW_POWER_UP_DONT_CARE Off

Then press Return.

If you are using the GUI:

e For Quartus Il v2.1:
Select Project>0Option & Parameter Settings
Then choose the ‘Power-Up Don’t Care’ from the ‘Existing option settings:’ list,
and set it to ‘Off’

e For Quartus Il v2.2:
Select Assignments>Settings>Default Logic Options Settings

~

www.celoxica.com Page 132

DK Design Suite user guide

Celoxica

Then choose the ‘Power-Up Don’t Care’ from the ‘Existing option settings:’ list,
and set it to ‘Off’

This only needs to be done once for the whole project. You do not need to set this option
if you are compiling EDIF generated directly by DK.

9.6.6 Importing timing constraint files into Actel Designer

To import .gcf files for Actel ProASIC and ProASIC+:

1. Start Designer.

2. Create or open the design in which you want to compile the netlist generated
by Handel-C.

3. Import the Handel-C-generated EDIF netlist, and any other design files, to the
project.

4. Use File=Import... to import the generated .gcf file that includes the timing
constraints.

5. Compile the design.
6. Ensure that you select Timing driven for the layout.
7. Lay out the design.

You can now do the placing and routing.

9.7 Targeting hardware via VHDL

To target hardware via VHDL, set the Build>Set Active Configuration option to VHDL. This
compiles directly to a .vhd file which can be passed to your synthesis or simulation
tools. You cannot compile Handel-C to VHDL from Nexus PDK.

You must specify the synthesis tool that you are using the Linker tab in Project Settings. If
you wish to simulate your VHDL, select ModelSim as the tool used.

The code generated is structured and relates the Handel-C function names to the VHDL
entity names.

If you want to simulate VHDL produced from Handel-C code or you want to target Xilinx
devices, you need to link to a ROC file.

In previous versions of DK, you could generate less readable VHDL by un-checking the
Generate Debug information box on the Compiler tab of Project Settings or using the command line -
g option. This option is no longer available. All VHDL output now has names generated
from Handel-C variable names.

If you want to co-simulate Handel-C with VHDL code you can use the Co-simulation
Bridge for ModelSim provided in Celoxica's Platform Developer's Kit.

~

www.celoxica.com Page 133

DK Design Suite user guide

Celoxica

9.7.1 VHDL file structure

Each Handel-C source file is mapped to a VHDL file. Each Handel-C function is mapped to
an entity and architecture. There is also a top-level VHDL file which links the design
entities together and contains global design ports. Macros are converted to inlined VHDL.
Source files consisting only of macro expressions or macro procedures will be converted
to an empty file and then deleted.

In previous versions of DK you could compile your VHDL without debug information to
produce less readable output. This option is no longer available; all VHDL output now has
names generated from Handel-C variable names. The -g option now has no effect for
VHDL output.

File names

VHDL file names depend on whether you build your files using the DK GUI, or from the
command line compiler.

If you use the command line compiler, you specify the name of your top-level output file
using the -o option. For example:

handelc -vhdl -o OutputFile
will produce a top level file called OutputFile.vhd
If you are using the GUI, the top-level file is called ProjectName_top.vhd.

Other files are named after the Handel-C files: FileName.suffix source files became
FileName_suffix.vhd. For example, UsefulFile_hcc becomes UsefulFile_hcc.vhd.

If there is more than one source file with the same name, further files are called
FileName_suffix_N.vhd, where N increments from 1.

Entities

The top-level VHDL file contains an entity with the same name as this file (without the
-vhd extension).

Each VHDL file corresponding to a Handel-C source file starts with an entity containing
global logic defined within that file called FileName_suffix. For example, the global
variables in UsefulFile.hcc are stored in the entity UsefulFile_hcc.

Functions are mapped onto entities called FileName_suffix_FunctionName. For
example, a function called MyFunction defined in MySource.hcc becomes an entity called
MySource_hcc_MyFunction.

Shared functions have a set of inputs for each use of the function.

inline functions have separate entities for each use of the function. The first instance of
the function generates an entity as above. Later instances have numbers appended to
the name, starting at 1. For example, the fourth instance of the inline function
FastFunction in UsefulFile.hcc becomes UsefulFile_hcc FastFunction_ 3.

~

www.celoxica.com Page 134

DK Design Suite user guide

Celoxica

Global reset

A global reset line is connected to all flip-flops/registers in the design. You can specify a
reset pin using the set reset construct.

You must specify a reset pin for Actel devices. If no reset is specified for Altera or Xilinx
devices, the registers in the design are reset on configuration. Altera devices have the
reset wire connected to ground, Xilinx devices use a ROC block.

If you specify a reset using the data specification, a reset pin (called Data) is added to
the top-level entity of the design. If you specify a reset without a pin, the reset pin will
be called ResetPin.

9.7.2 Naming of VHDL files and entities

If you compile the Handel-C project shown below to VHDL using the GUI:

MyProject
#i r_1cl ude Global Declarations of
<MyFile.hch> variables etc. FunctA and
FunctB
main function, Definitions
calling FunctA of FunctA
and FunctB and
FunctB
Sourcel.hcc MyFile.hcc MyFile_hch

www.celoxica.com Page 135

DK Design Suite user guide

Celoxica

the following VHDL files and entities are produced:

VHDL project

Entities: Entities: Entity:
) MyProject
Sourcel_hcc MyFile_hcc _top
(contains global .
logic) MyFile_hcc e(zlrl:lil:ise sOth?(;
FunctA
- contains
Sourcel_hcc .
_main MyFile_hcc global ?es'gn
_FunctB ports)
Sourcel_hcc.vhd MyFile_hcc.vhd MyProject_top.vhd

If you compile the files from the command line, the top-level file and its entity are named
after the output file name you specify using the -o option. The other file and entity
names are the same as those shown above.

9.7.3 Mapping Handel-C functions to VHDL entities
An entity generated from a Handel-C function will have the following inputs and outputs:
reset

global ports clk
1
i

T ——
o e o ety o

Fesult _end ——— —4—— Calld RE

4 Callld Beset
Fesult —— -

—t—Call10 paraml
Result WE ——d—

————Call0 paramd

There is an input port for each parameter to the function. It is given the name
CalIN_parameterName and is of the width of that parameter. For example, the function
add(int 8 a, unsigned 16 b) in the file maths.hcc would be converted to an entity

~

www.celoxica.com Page 136

DK Design Suite user guide

Celoxica

maths_hcc_add. The first use of the function would generate an 8-bit port called CallO_a
and a 16-bit port called Call0_b.

Each call to a shared function will duplicate the numbered ports (e.g. Cal 10_RE) with an
incremented number. The result lines are the same for each call to the function.

When the function is called, the Cal IN_RE port is set high. One clock cycle before the
function has completed, the Result_WE port is set high. When the function completes,
the result appears on the Result port, and the Result_End line is set high.

The Cal IN_Reset port is only there if this call is from a try... reset statement

Global ports are produced from signals that cross function boundaries, such as global
variables, ground and power. The names of global ports are prefixed with globals_.

The reset port is connected to the global reset line, which is either reset on configuration
or specified using the set reset construct.

The name of the clock port depends on whether you specify a clock divide. If there is no
clock divide, or the clock is divided by 1, the port will be called clk. If the clock divide is
more than 1, the name of the port will be clk_divN, where N is the value of the divide.

Timing

The timing for the entity signals is shown below.

function called
here

fast clock
clk divl

parameters
e.g.CallO_A

call0_RE

Result (after
entity delay)

Result_WE

Result_End

result register

www.celoxica.com Page 137

DK Design Suite user guide

Celoxica

When the Result_WE signal is asserted, the result can be written to the result register on
the next rising clock edge.

The Result_End signal is asserted in the clock cycle before the entity logic is released.

9.8 Targeting hardware via Verilog

To target hardware via Verilog, set the Build>Set Active Configuration option to Verilog. This
compiles directly to a .v file which can be passed to your synthesis or simulation tools.
You cannot compile Handel-C to Verilog from Nexus PDK.

You must specify the synthesis tool that you are using the Linker tab in Project Settings. If
you wish to simulate your Verilog, select ModelSim as the tool used.

The code generated is structured and relates the Handel-C function names to the Verilog
module names.

If you want to simulate Verilog produced from Handel-C code or you want to target Xilinx
devices, you need to link to a ROC file.

In previous versions of DK, you could generate less readable Verilog by un-checking the
Generate Debug information box on the Compiler tab of Project Settings or using the command line -
g option. This option is no longer available. All Verilog output now has names generated
from Handel-C variable names.

If you want to co-simulate Handel-C with Verilog code you can use the Co-simulation
Bridge for ModelSim provided in Celoxica's Platform Developer's Kit.

9.8.1 Verilog file structure

Each Handel-C source file is mapped to a Verilog file. Each Handel-C function is mapped
to a module. There is also a top-level Verilog file which links the design modules together
and contains global design ports. Macros are converted to inlined Verilog. Source files
consisting only of macro expressions or macro procedures will be converted to an empty
file and then deleted.

In previous versions of DK you could compile your Verilog without debug information to
produce less readable code. This option is no longer available; all Verilog output now has
names generated from Handel-C variable names. The -g option now has no effect for
Verilog output.

File names

Verilog file names depend on whether you build your files using the DK GUI, or from the
command line compiler.

~

www.celoxica.com Page 138

DK Design Suite user guide

Celoxica

If you use the command line compiler, you specify the name of your top-level output file
using the -o option. For example:

handelc -verilog -o OutputFile
will produce a top level file called OutputFile.v
If you are using the GUI, the top-level file is called ProjectName_top.v.

Other files are named after the Handel-C files: FileName.suffix source files became
FileName_suffix.v. For example, UsefulFile.hcc becomes UsefulFile _hcc.v.

If there is more than one source file with the same name, further files are called
FileName_suffix_N.v, where N increments from 1.

Modules

The top-level Verilog file contains a module with the same name as this file (without the
.V extension).

Each Verilog file corresponding to a Handel-C source file starts with a module containing
global logic defined within that file called FileName_suffix. For example, the global

variables in UsefulFile_hcc are stored in the entity UsefulFile_hcc.

Functions are mapped onto entities called FileName_suffix_FunctionName. For
example, a function called MyFunction defined in MySource.hcc becomes an entity called
MySource_hcc_MyFunction.

Shared functions have a set of inputs for each use of the function.

inline functions have separate modules for each use of the function. The first instance
of the function generates an module as above. Later instances have numbers appended
to the name, starting at 1. For example, the fourth instance of the inline function
FastFunction in UsefulFile_hcc becomes UsefulFile_hcc_FastFunction_3.

Global reset

A global reset line is connected to all flip-flops/registers in the design. You can specify a
reset pin using the set reset construct.

You must specify a reset pin for Actel devices. If no reset is specified for Altera or Xilinx
devices, the registers in the design are reset on configuration. Altera devices have the
reset wire connected to ground, Xilinx devices use a ROC block.

If you specify a reset using the data specification, a reset pin (called Data) is added to
the top-level module of the design. If you specify a reset without a pin, the reset pin will
be called ResetPin.

www.celoxica.com Page 139

DK Design Suite user guide

Celoxica

9.8.2 Naming of Verilog files and modules

If you compile the Handel-C project shown below to Verilog using the GUI:

MyProject
#include Global Declarations of
<MyFile.hch> variables etc. FunctA and
FunctB
main function, Definitions
calling FunctA of FunctA
and FunctB and
FunctB
Sourcel._hcc MyFile_hcc MyFile.hch
The following Verilog files and modules are produced:
Verilog project
Modules: Modules: Module:
) MyProject
Sourcel _hcc MyFile_hcc _top
(contains global .
logic) MyFile_hcc (links other
_FunctA modules and
Sourcel_hcc Contamg
_main MyFile_hcc global design
_FunctB ports)
Sourcel_hcc.v MyFile_hcc.v MyProject_top.v

If you compile the files from the command line, the top-level file and its module are
named after the output file name you specify using the -o option. The other file and
module names are the same as those shown above.

www.celoxica.com Page 140

DK Design Suite user guide

Celoxica

9.8.3 Mapping Handel-C functions to Verilog modules
A module generated from a Handel-C function will have the following inputs and outputs:
reset

global ports clk
1
i

T ——
o e e e

Result_end —_— — CallEl_RE

s Callld Beset
Fesult —— -

——4——0Call0 paraml
Result WE =—————sf—

————Cal10 parami

There is an input port for each parameter to the function. It is given the name
CalIN_parameterName and is of the width of that parameter. For example, the function
add(int 8 a, unsigned 16 b) in the file maths.hcc would be converted to an module
maths_hc_add. The first use of the function would generate an 8-bit port called Call0_a
and a 16-bit port called Call0_b.

Each call to a shared function will duplicate the numbered ports with an incremented
number. The result lines are the same for each call to the function.

When the function is called, the Cal IN_RE port is set high. One clock cycle before the
function has completed, the Result_WE port is set high. When the function completes,
the result appears on the Result port, and the Result_End line is set high.

The Cal IN_Reset port is only there if this call is from a try... reset statement

Global ports are produced from signals that cross function boundaries, such as global
variables, ground and power. The names of global ports are prefixed with globals_.

The reset port is connected to the global reset line, which is either reset on configuration
or specified using the set reset construct.

The name of the clock port depends on whether you specify a clock divide. If there is no
clock divide, or the clock is divided by 1, the port will be called clk. If the clock divide is
more than 1, the name of the port will be clk_divN, where N is the value of the divide.

www.celoxica.com Page 141

DK Design Suite user guide

Celoxica

Timing
function called
here
v
fast clock
clk_divl
parameters
e.g.CallO_A
CallO_RE

Result (after
entity delay)

Result WE

Result_End

result register

When the Result_WE signal is asserted, the result can be written to the result register on
the next rising clock edge.

The Result_End signal is asserted in the clock cycle before the module logic is released.

www.celoxica.com Page 142

DK Design Suite user guide

Celoxica

10 Tutorial examples

10.1 Example 1: Accumulator example

The workspace for Handel-C tutorial example 1 is in Instal IDi r\DK\Examples\Handel -
C\Examplel.

The program takes a number of values from a file and calculates the sum of those
values. It illustrates the basics of producing a Handel-C program and demonstrates the
use of the simulator.

The data is read from a sample file sum_in.dat (provided in the Examplel directory) and
results are written to a file sum_out.dat (in the Examplel directory).

10.1.1 Compiling and simulating example 1

1. Open the workspace file (DK\Examples\Handel-C\Examplel\Examplel.hw) by
double-clicking on it. DK starts with the Examplel workspace open.

2. Check that you are in File View in the Workspace window and click on the + sign
to the left of the chip icon to see what files are within the project.

3. To examine the code, double-click the file sum.hcc in the Workspace window.
If you cannot see it, you can make the Workspace window larger by dragging
its borders.

4. Build the project in Debug mode by selecting Build Examplel from the Build menu.
Messages from the compiler appear in the output window. They give an
approximation of the number of hardware gates required to implement the
program.

5. Start the debugger by pressing F11 to step through the simulation, or F5 to
run to the end. The simulator reads the contents of values from the file
sum_in.dat, sums them, and writes the result to the file sum_out.dat.

To watch the accumulation progressing in the variable sum, open a Watch
window (select View=Debug Windows>Watch or type Alt+3) and type sum in the
window.

6. The simulator terminates at the end of the program.

7. Examine the files to ensure that the output file contains the correct result. If
you wish to change the values in sum_in, ensure that each value is placed on
a separate line.

www.celoxica.com Page 143

DK Design Suite user guide

Celoxica

10.2 Example 2: Pipelined multiplier example

The workspace for Handel-C tutorial example 2 is in Instal IDir\DK\Examples\Handel-
C\Example2.

The program performs multiplication using a replicated parallel structure to create a
pipeline.

The operands used are the initialization values to the arrays of leftOps and rightOps,
such that the results[n] = leftOps[n] * rightOps[n].

This multiplier calculates the 16 LSBs of the result of a 16-bit by 16-bit multiply using
long multiplication. The multiplier produces one result per clock cycle with a latency of 16
clock cycles. This means that although any one result takes 16 clock cycles, you get a
throughput of 1 multiply per clock cycle. Since each pipeline stage is very simple,
combinational logic is shallow and a much higher clock rate is achieved than would be
possible with a complete single cycle multiplier.

At each clock cycle, partial results pass through each stage of the multiplier in the sum
array. Each stage adds on 2" multiplied by the b operand if required. The LSB of the a
operand at each stage tells the multiply stage whether to add this value or not.

Operands are fed in on every clock cycle on signals leftOp and rightOp. Results appear
16 clock cycles later on every clock cycle on signal result.

10.2.1 Example 2: Index array test code details

/*
* Index at end of array macro
*/
#define IndexAtArrayEnd(Index, ArrayLimit) \
select(exp2(width(Index)) == (ArrayLimit), \
1(Index), ((Index) == (ArrayLimit)))

The IndexAtArrayEnd macro tests if the index of size ArrayLimit is at the end of an
array, whatever width the index counter has been assigned by the compiler. In most
cases, this is a normal comparison, but if the index overflows, the test will compare the
overflow value. An example is an index of size 4. The compiler will assign the index a
width of 2 bits (to store the values O — 3). When it is compared against 4, the index will
hold the value O (as the most significant bit has been lost) and the compiler will generate
an error. In this case, the IndexAtArrayEnd macro compares against O instead of against
4.

This implies that such a comparison cannot be made at the start of the cycle, when
element zero is being processed, but only at the end of the cycle after the index has been
incremented.

~

www.celoxica.com Page 144

DK Design Suite user guide

Celoxica

10.2.2 Compiling and simulating example 2

To compile and simulate the pipelined multiplier, open the workspace in the
Examples\Handel-C\Example2 directory and select Build Example2 from the Build menu. You
can then start the debugger.

1. Open the workspace file (DK\Examples\Handel-C\Example2\Example2.hw) by
double-clicking on it. DK starts with the Example2 workspace open.

2. Check that you are in File View in the Workspace window and click on the + sign
to the left of the chip icon to see what files are within the project.

3. To examine the code, double-click the file parmult._hcc in the Workspace
window. If you cannot see it, you can make the Workspace window larger by
dragging its borders.

4. Build the project in Debug mode, by selecting Build Example2 from the Build
menu. Messages from the compiler appear in the output window. They give an
approximation of the number of hardware gates required to implement the
program.

5. Start the debugger by pressing F11 to step through the simulation. Press F11
again to proceed to the next step.

6. Check that you are following a thread in the parMult() function. The yellow
arrow (current thread) should be next to a line within the parMult() function
in the lower part of the code in parmult.hcc. If it is not, right-click on one of
the grey arrows next to the parMult() function and select Follow Thread.

7. Open the Variables window (View=Debug Windows=>Variables) and select the Locals
tab.

8. View the values propagating through xx (intermediate value of left operand)
by clicking on the + sign next to xx and the pressing F10 several times. You
can also view the values in yy (intermediate value of right operand) and rr
(intermediate result).

Each time you press F10, one stage of the pipeline will be completed. After 18
clock cycles, the first result is available, and subsequent results are provided
on successive clock cycles.

9. To stop simulation, select Debug>Stop Debugging (Shift F5). The simulation will
not stop by itself.

10.3 Example 3: Queue example

The workspace for Handel-C tutorial example 3 is in Instal IDi r\DK\Examples\Handel -
C\Example3.

The example shows how to create parallel tasks and how to communicate between those
tasks. It also illustrates arrays of variables and arrays of channels. The example shows a
project containing independent main functions which are implemented independently in
hardware.

~

www.celoxica.com Page 145

DK Design Suite user guide

Celoxica

There are two source files: queue.hcc handles the queue function, while main.hcc
provides 1/0 facilities. Definitions common to both files are given in queue_hch. They
both have a clock set (in this case, the signal on pin 1 is used for both functions).

The queue function code illustrates the use of parallel tasks and channel communications
by implementing a simple four-place queue. Each task holds one piece of data and has
an input channel connected to the previous queue location and an output channel
connected to the next queue location.

At each iteration, the data moves one place up the queue. The program executes an
infinite loop, and you must use Stop Debugger to terminate the simulation.

The queue presented here is parameterized on the width of the input and output
channels because the width of all internal variables are undefined and inferred by the
compiler.

10.3.1 Example 3: detailed explanation

This example uses four parallel tasks, each containing one word of data. At each
iteration, one word is passed from one task to another in a chain like this:

State [0] --> State [1] --> State [2] --> State [3] -->

The links between the processes are entries in the 1inks array of channels. Input and
output to and from the system is handled by the main function.

Communication between the two functions is handled by an array of channels.
The queue only reads data and writes data on every other clock cycle.

A replicated pipeline is used to implement the queue. The first and last entries in the
pipeline are treated differently by using a select expression or an ifselect statement
to differentiate them at compile time.

10.3.2 Compiling and simulating example 3

1. In the Examples\Handel-C\Example3 directory, double-click on the
workspace file Example3.hw.

2. Build the example in Debug mode by selecting Build>=Build Example3.
3. Press F11 to step into the program in the debugger.

www.celoxica.com Page 146

DK Design Suite user guide

Celoxica

4. When you start debugging, you will be asked to select a clock to follow. Select
the queue function clock (tagged with the file name queue.hcc).

Select Clock EH |

Clocks:
=4 Exampled

----- %) Exampled 0 [main hee L 78]
wample3. 1 [queue hco L 80)

k. Cancel

5. To view local variables, select View=Debug Windows=>Variables or press Alt+4. Then
select the Locals tab at the bottom of the window.
The Variables window shows the variables local to the function. Press F11
repeatedly to step through the code, and watch the values change.

6. To watch the queue in the debugger, open the Watch window (View=Debug
Windows=>Watch or press Alt+3). Click at the top of the window and type in
state. Click on the + next to the state variable to display a list of the array
elements. Press F11 repeatedly to step through the code, and watch the
values change.

7. To stop simulation, select Debug>Stop Debugging.

10.4 Example 4: Clients / server example

The workspace for Handel-C tutorial example 4 is in Instal IDir\DK\Examples\Handel -
C\Example4.

The clients and server are implemented as independent pieces of hardware,
communicating via channels. The server reads data from an array of channels from the
clients and puts the results in a queue as they arrive. They are read from the queue by a
dummy service routine. This is where the client requests could be processed by a real
server routine.

The server clock runs at half the speed of the client clock to allow time for complex
assignments during request processing.

There is a pair of identical client functions. These functions merely select valid requests
from an array and send them to the server.

www.celoxica.com Page 147

DK Design Suite user guide

Celoxica

10.4.1 Example 4: code details

The internal queue is implemented in a structure consisting of two counters (queueln and

queueOut) which are used to test how full the queue is, and an mpram containing the
queued data. Use of an mpram allows the queue to be written to and read from in the
same clock cycle.

typedef struct

{
unsigned int queueln;
unsigned iInt queuelut;
mpram
{
wom int DataWidth dataln[MaxQueue];
rom int DataWidth dataOut[MaxQueue];
} values;
} Queue;

A prialt in a do while loop checks whether each client is ready to send data, and reads
the data if it is ready. The use of prialt with a default case ensures that the server
doesn't have to wait for each client to have data. The use of a loop ensures that each
client is polled. If a single prialt statement were used with cases for each client, clients
further down the prialt statement might never be polled, because higher-priority clients
could always grab the resource.

while (1)
{
i =0;
do
{
prialt
{
case clientReq[i] ? value:
Queuelnsert(reqQueue, value);
break;
default:
break;
}
i

++;
} while (!IndexAtArrayEnd(i, MaxClients));

www.celoxica.com Page 148

DK Design Suite user guide

Celoxica

10.4.2 Compiling and simulating example 4

1. Double-click on the workspace file Example4.hw in the Examples\Handel -
C\Example4 directory.

2. Build the example in Debug mode by selecting Build>Build Example4.
3. Step into the program within the debugger by pressing F11.

4. When you start debugging, you will be asked to select a clock to follow (the
client clock or the server clock). Choose the client clock by selecting it.

Select Clock EH |

Clocks:
=4 Exampled

Ewampled.0 [client hoo Lo 82)
----- @ Ewxampled.1 [zerver.hoo Lo 82]

k. | Cancel |

5. Step through the code by pressing F11.

6. If you open the Clocks/Threads window (press Alt + 5), you will see that the
client clock advances more quickly than the server clock.

7. The program executes an infinite loop, and you must stop the debugger (press
Shift + F5) to terminate the simulation.

10.5 Example 5: Microprocessor example

The workspace for Handel-C tutorial example 5 is in Instal IDir\DK\Examples\Handel -
C\Example5.

In this example, Handel-C implements a simple microprocessor. This microprocessor
executes a program stored in ROM to calculate members of the Fibonacci number

sequence.

It is equally possible to produce processors which contain specialized instructions for any
application. Thus, you could use Handel-C to develop processors capable of executing
programs for specialized applications with the minimum of effort.

~

www.celoxica.com Page 149

DK Design Suite user guide

Celoxica

10.5.1 Example 5: microprocessor description

The system described in this example consists of a ROM containing the program to
execute, a RAM containing some scratch variables and a processor that understands 10
opcodes. Each instruction is made up of a 4-bit opcode and a 4-bit operand. The _asm_
preprocessor macro is the assembler for this language and is used to fill in the entries in
the program ROM declaration.

The processor has three registers:

e a program counter, pc, that points to the next instruction to be fetched from
the ROM

e an instruction register, ir, containing the instruction being executed

e an accumulator register, x, used as one input to the 'ALU’

The instructions that the processor can execute are:

Opcode Description

HALT Stop processing

LOAD Load a value from RAM into x

LOADI Load a constant into x

STORE Store x to RAM

ADD Add a value from RAM to x

SuB Subtract a value from RAM from x
JUMP Unconditional jump to a ROM location

JUMPNZ Jump to a ROM location if x is not O
INPUT Read a value into x
OUTPUT Write x to user

Using these instructions, a ROM is built containing a program to generate the Fibonacci
numbers.

The execution unit of the processor simply fetches instructions from the program ROM
and executes them using a switch statement.

10.5.2 Compiling and simulating example 5

1. Double-click on the workspace file Example5.hw in the Examples\Handel -
C\Example5 directory.

2. Build the example in Debug mode by selecting Build>Build Example5.
3. Step into the program within the debugger by pressing F11.

~

www.celoxica.com Page 150

DK Design Suite user guide

Celoxica

10.6 Example 6: clock manager example

The workspace for Handel-C tutorial example 6 is in Instal IDi r\DK\Examples\Handel -
C\Example6.

The program creates a clock manager for a Handel-C program that interfaces to an
external EDIF program.

The program takes in a clock signal from an external program, and then selects whether
to use the same clock or a clock divided by 10 for the part of the project to be written in
Handel-C.

The program demonstrates how to instantiate primitives and parameterize them using
the properties specification.

This example cannot be simulated as the clock is fed from an instantiated primitive and
there is no clock statement in the Handel-C code. The example should be built for EDIF
output. This option is not available in Nexus PDK.

10.6.1 Example 6: description of program

Example 6 demonstrates how to instantiate primitives, and how to parameterize
primitives using the properties specification.

The Handel-C code connects to an external EDIF block which implements a clock
manager. It allows you select between two clocks for your Handel-C program.

www.celoxica.com Page 151

DK Design Suite user guide

Celoxica

The primitives are instantiated using Handel-C interface definitions.

clkth
IPAD (815" DCh BIFG
MainClkPadInlPAD >— MainEUFG CLKIN ~ ClockMan CLKD #\MainBUFL
CLKFE
CLKH180
[[D=sEn CLKZT0
{—» PSINCDEC e | L
—* |PSEN CLK2X180
I —a |PSCLK CLKDY T
reser = CLKF¥
- CLKF¥180
|:>_>{ » [RET LOCKED
PEDORNE
STATUS
BIUFGMU Clock to
1] Handel-C
MainClkMux(Q
I =

ClkZelectBus ("E17")

o

CIRCUIT PRODUCED BY EXAMPLE 6 CODE

The main clock signal MainClkPadln, is fed into the Clock Manager, ClockMan.

The ClkSelectBus signal determines whether the clock used by the Handel-C program,
MainClkMux, will be the same as the main clock (CLKO signal), or divided by 10 (CLKDV
signal).

Instantiating primitives

The primitives (IPAD, IBUFG, DCM, BUFG and BUFGMUX) are instantiated by the interface
definitions in Handel-C.

For example,

interface IPAD(unsigned 1 IPAD) MainClkPadIn() with {properties = {{"LOC",
"A13"}}};

instantiates a primitive called 1PAD, with a 1-bit output port called IPAD.

MainClkPadln is the instance of the IPAD (there is only one instance of the primitive in
this case). The properties specification sets the location property (LOC) and constrains
it to pin A13.

If you build the example and examine the EDIF netlist, you can see the primitives
represented by the blocks starting (cell...

~

www.celoxica.com Page 152

DK Design Suite user guide

Celoxica

For example:

(cell 1PAD
(cellType GENERIC)
(view view_1
(viewType NETLIST)
(interface
(port IPAD (direction OUTPUT))

10.6.2 Compiling example 6

1. Double-click on the workspace file CustomClock.hw in the Examples\Handel -
C\Example6 directory.

2. To examine the code, check that you are in File View in the Workspace window
and click on the + sign to the left of the chip icon. Then double-click the file
CustomClock.hcc to open it in code editor window.

3. Change the build configuration to EDIF: select Build>Set Active Configuration, then
select EDIF and press OK.

4. Compile and build it by selecting Build>Build CustomClock.

5. Browse to the build folder: Example6\EDIF.
You should see the following files: CustomClock.edf and CustomClock.hco.

6. To view the netlist, open CustomClock.edf in Notepad.

The primitives are visible in the blocks starting (Cell. ..

This example can only be built for EDIF output. It cannot be simulated as there is no
clock statement in the Handel-C. EDIF output is not available from Nexus PDK.

www.celoxica.com Page 153

DK Design Suite user guide

Celoxica

11 Porting C to Handel-C

11.1 Stages in porting C to Handel-C

There are a number of stages in porting and mapping a conventional C program to
hardware. These are:
1. Decide how the software system maps onto the target hardware platform.

2. Convert the conventional C program to Handel-C and use the simulator to
check correctness.

3. Modify code to take advantage of extra operators available in Handel-C.
4. Add fine grain parallelism.

5. Add the necessary hardware interfaces and map the simulator channels onto
them.

6. Use the device place and route tools to generate the device image(s).

These steps are guidelines only. Some of the stages may not be relevant to your design
or you may require extra stages if your design does not fit this example flow.

11.1.1 Deciding how the software maps to the hardware

For example, external RAM connected to the device can be used to hold buffers used in
the conventional C program. This mapping may also include partitioning the algorithm
between multiple devices and, hence, splitting the conventional C into multiple Handel-C
programs. Convert the conventional C program to Handel-C and use the simulator to
check correctness. You can convert the program a piece at a time, leaving functions in C
code and linking them into the Handel-C.

11.1.2 Converting the program from C to Handel-C

Remember that there may be optimizations that can be made to the algorithm given that
a Handel-C program can use parallelism. For example, you can sort numbers more
quickly in parallel by using a sorting network. This form of coarse grain parallelism can
provide massive performance gains so time should be spent on this step.

11.1.3 Using the extra operators available in Handel-C

For example, concatenation and bit selection can be used where conventional C programs
may use shifts and masks. Simulate again to ensure program is still correct.

~

www.celoxica.com Page 154

DK Design Suite user guide

Celoxica

11.1.4 Adding fine grain parallelism

For example, make parallel assignments or execute individual instructions in parallel to
fine-tune performance. Again, simulate to ensure that the program still functions
correctly.

11.1.5 Adding hardware interfaces

Add the hardware interfaces necessary for the target architecture and map the simulator
channel communications onto these interfaces. If possible, simulate to ensure mapping
has been performed correctly.

11.2 Porting C to Handel-C: Edge detector
example

The edge detector example is provided in the Examples\Handel-C\ExampleC directory. It
consists of a number of versions of the same application that detail the process of porting
a conventional C application to a Handel-C application. All but the final stage (targeting
real hardware) are presented as complete examples that may be simulated with the
Handel-C simulator. They are stored as separate projects within a single workspace. You
can execute this code, and simulate the different versions of the ported code.

The examples use specific hard-coded file names for the image data. The image data file
names must be exactly the same as those given in the examples, or the source code
must be edited and recompiled.

Program description

The edge detector program reads data from a raw data file into a buffer. The function
edge_detect then performs a simple edge detection and stores the results in a second
buffer which is stored in a second file.

The edge detection is performed by subtracting the pixel values for adjacent horizontal
and vertical pixels, taking the absolute values and thresholding the result. The source
and destination images are both 8-bit per pixel greyscale images.

11.2.1 The original program

The edge detector program gives a simple example of porting C code to Handel-C.

The original ANSI-C program is in Instal IDir\DK\Examples\Handel-
C\ExampleC\Edge_ C\edge.c.

To examine the file in DK:

www.celoxica.com Page 155

DK Design Suite user guide

Celoxica

Select File=0pen.

Choose ANSI C/C++ in the Files of type box.
Browse to the location of the file.

Click Open.

h bR

Running the original C program

The conventional C source file and a compiled version are provided along with an
example image (source.bmp).

You can run the program now to see the results. This is done by changing to the
Examples\Handel-C\ExampleC\Data directory, opening a Command Prompt window and
typing the following commands:

1. Convert the example BMP file to raw data with the bmp2raw utility.
bmp2raw -b source.bmp source.raw 8bppdest.rgb

2. Execute the conventional C edge detector.
- -\Edge c\edge c

3. Convert the output from the edge detector back to a BMP file using the
raw2bmp utility:
raw2bmp -b 256 dest.raw dest c.bmp 8bppsrc.rgb

To compare results, you can use the standard Windows Paint utility to display the source
and destination BMP files.

11.2.2 Stage 1: First pass conversion to Handel-C

The first step is to port the conventional C to Handel-C with as few changes as possible
to ensure that the resulting program works correctly. The file handling sections of the
original program are modified to read data from a file and write data back to a file using
the Handel-C simulator.

The first pass conversion is in edge_v1.hcc. The following points should be noted about
the port:

1. The Source and Dest buffers have been replaced with two RAMSs.

2. An abs() macro expression has been used to replace the standard C function.

3. The x and y variables have been given widths equal to the number of address
lines required for the RAMs to simplify the index of the RAM. Without this,
each variable would have to be padded with zeros in its MSBs to avoid a width
conflict when accessing the RAM.

4. Temporary variables have been used for the three pixels read from RAM to
avoid the restriction on only one access per RAM per clock cycle. Without
these variables, the condition for the if statement would require multiple
accesses to the Source RAM.

~

www.celoxica.com Page 156

DK Design Suite user guide

Celoxica

5. The pixel values must be extended by one bit to ensure the subtract does not
underflow.

6. The chanin (Input) and chanout (Output) simulator channels are used to
transfer data in and out of the Handel-C simulator. They replace the fread
and fwrite file operations in the original C source. chanin is used to read
data from the source image file into the Handel-C simulator. chanout is used
to write data from the Handel-C simulator to the destination image file.

The file name is given using the with specification, e.g.
chanin unsigned Input with {infile = "._.\Data\source.dat"};

Running the first attempt Handel-C code

To execute the Handel-C code:

1. Convert the example BMP file to text data with the bmp2raw utility by opening
a Command prompt or MS-DOS window, changing to the Examples\Handel -

C\ExampleC directory and typing:
bmp2raw source.bmp source.dat 8bppdest.rgb

2. Open the DK edge detector workspace (Examples\Handel-
C\ExampleC\ExampleC.hw) by double-clicking on it.

3. Build the first version of the Handel-C code in Debug mode by selecting
Build>Build_Edge v1. If Edge_v1 is not the active project, set this by selecting
Project>Set Active Project=>Edge_v1.

4. Run the project by selecting Build>Start Debug>Go or pressing F5

5. Convert the output from the edge detector back to a BMP file using the
raw2bmp utility by opening a Command prompt or MSDOS window, changing to

the Data directory and typing:
raw2bmp 256 dest.dat dest _vl.bmp 8bppsrc.rgb

Data files are read from and written to the \Data directory, since this is set as the
working directory on the Debugger tab in the Project Settings dialog.

11.2.3 Stage 2: First optimizations of the Handel-C program

The second stage in developing the edge detector program is to change some of the
operators familiar in C to operators more suitable for Handel-C.

In the stage 1 code, every time the Source or Dest RAM is accessed, a multiplication is
made by the constant WIDTH. The Handel-C optimizer simplifies this to a shift left by 8
bits but we could easily do this by hand to reflect the hardware more accurately and
reduce compilation times. We can also introduce new macros to access the RAMs given x
and y coordinates:

~

www.celoxica.com Page 157

DK Design Suite user guide

Celoxica

macro expr ReadRAM(a, b) =
((unsigned 1)0) @
Source[(0@a) + ((0@b) << 8)];
macro proc WriteRAM(a, b, ¢)
Dest[(0@a) + ((0@b)<<8)] = c;

Notice how the macros pad both the result and the coordinate expressions with zeros.
This allows us to reduce the width of the x and y counters to 8 bits each and reduces
clutter in the rest of the program. This width reduction does mean that the loop
conditions must be altered because x and y are no longer wide enough to hold the
constant 256. Instead, we test against zero since the counters will wrap round to zero
after 255.

Running the code version 2

To execute this version of the edge detector example Handel-C code:

1. If you have not done so, convert the example BMP file to text data.

Open a Command prompt or MS-DOS window, change to the ExampleC\Data

directory and type
bmp2raw source.bmp source.dat 8bppdest.rgb

2. Open the DK edge detector workspace (Examples\Handel-
C\ExampleC\ExampleC.hw) by double-clicking on it.

3. Make the version 2 project current within the ExampleC workspace by
selecting Project=>Set Active Project>Edge v2:

4. Build and run the project by selecting Build>Build Edge_v2 followed by F5.

5. Convert the output from the edge detector back to a BMP file using the
raw2bmp utility by opening a Command Prompt or MS-DOS window. Change to

the Data directory and type:
raw2bmp 256 dest.dat dest_v2._bmp 8bppsrc.rgb

Data files are read from and written to the \Data directory, since this is set as the
working directory on the Debugger tab in the Project Settings dialog.

11.2.4 Stage 3: Adding fine grain parallelism

To improve performance in the edge detector program we can make two modifications:
1. Replace for loops with while loops
2. Add multiple parallel accesses to external RAMs in single clock cycles
The version 3 edge detector project contains the Handel-C code with these modifications.
To execute this version of the code:

1. If you have not done so, convert the example BMP file to text data.

~

www.celoxica.com Page 158

DK Design Suite user guide

Celoxica

Open a Command prompt or MS-DOS window, change to the ExampleC\Data
directory and type

bmp2raw source.bmp source.dat 8bppdest.rgb
2. Open the DK edge detector workspace (Examples\Handel-
C\ExampleC\ExampleC.hw) by double-clicking on it.

3. Make the version 3 project current within the ExampleC workspace by
selecting Project>Set Active Project>Edge v3

4. Build and run the project by selecting Build>Build Edge_v3 followed by F5.

5. Convert the output from the edge detector back to a BMP file using the
raw2bmp utility by opening a Command Prompt or MS-DOS window. Change to

the Data directory and type:
raw2bmp 256 dest.dat dest_v3.bmp 8bppsrc.rgb

Data files are read from and written to the \Data directory, since this is set as the
working directory on the Debug tab in the Project Settings dialog.

Replacing for loops with while loops
The for loop expands into a while loop inside the compiler in the following way:

for (Init; Test; Inc)

Body;
becomes:
{
Init;
while (Test)
{
Body;
Inc;
}
}

This is normally not efficient for hardware implementation because the Inc statement is
executed sequentially after the loop body when in most cases it could be executed in
parallel. The solution is to expand the for loops by hand and use the par statement to
execute the increment in parallel with one of the statements in the loop body.

Multiple parallel access to external RAM

An area in which the edge detector program's performance can be improved concerns the
three statements required to read the three pixels from external RAM. Without the
restriction on multiple accesses to RAMs the loop body of the edge detector could be
executed in a single cycle whereas the current program requires four cycles, three of
which access the RAM. As many of these RAM accesses need to be eliminated as

possible.
\\

www.celoxica.com Page 159

DK Design Suite user guide

Celoxica

Since it is not possible to access the external RAM more than once in one clock cycle, the
only way to improve this is to access multiple RAMs in parallel. Version 2 accesses most
locations in the external RAM three times.

For example, when x is 34 and vy is 56:

e The three pixels read are at coordinates (34,55), (33,56) and (34,56).

e The first pixel is also read when x is 34 and y is 55, and when x is 35 and y
is 55.

e The second pixel is also read when x is 33 and y is 56, and when x is 33 and
y is 57.

If the pixels are stored in two extra RAMs when they are read from the main external
RAM for the first time then you could access these additional RAMs to get pixel values in
the main loop.

The first step is to store the previous line of the image in an internal RAM on the device.
This allows the pixel above the current location to be read at the same time as the
external RAM is accessed. The second step is to store the pixel to the left of the current
location in a register. The loop body then looks something like this:

Pixell = ReadRAM(X, Y);
Pixel2 = PixellLeft;
Pixel3 = LineAbove[x];

LineAbove[x] = Pixell;
PixelLeft = Pixell;

At first glance, it looks worse, as the number of clock cycles has increased, but you can
now add parallelism to make it look like this:

par
{
Pixell = (int)ReadRAM(X, Y);
Pixel2 = PixellLeft;
Pixel3 = (int)LineAbove[x];
}
par
{
LineAbove[x] = Pixell;
PixelLeft = Pixell;
}

Note the LineAbove RAM must be initialized at the start of the image to contain the first
line of the image and the PixelLeft variable must be initialized at the start of each line
with the left hand pixel on that line.

~

www.celoxica.com Page 160

DK Design Suite user guide

Celoxica

Since the second of these par statements and the if statement are not dependent on
each other they can be executed in parallel.

Putting all these modifications together gives an edge_ detect procedure. Examine
edge_v3.hcc in DK or Notepad. Notice that the increment of y has been moved from the
end of the loop to the start, and the start and end values have been adjusted
accordingly. This allows the increment to be executed without additional clock cycles,
which would be required if it were placed at the end of the loop.

11.2.5 Stage 4: Further fine grain parallelism

We have now reduced the core loop body from five clock cycles (including the loop
increment) to 2 clock cycles. Can we do any better? The answer is yes because we
should be able to access the two off-chip banks of RAM in parallel. Thus, the two parallel
statements in the loop body could be executed simultaneously if we could organize the
data flow correctly.

We have to modify the program again because the LineAbove internal RAM is accessed in
both clock cycles. Parallelizing the two statements is not permitted because it would
involve two accesses to the same internal RAM in a single clock cycle.

The solution is to increase the number of internal RAMs. The current line can be copied
into one internal RAM while the previous line is read from a second internal RAM. The two
internal RAM banks can then be swapped for the next line. Note that with Handel-C
declaring two banks with 256 elements each (ram unsigned char LineAbove[2]
[WIDTH]) is much more efficient than 256 banks with two elements each, whereas in
conventional C there would be no practical difference.

By also removing the Pixell, Pixel2 and Pixel3 intermediate variables, the two
statements in the loop body can be rolled into one. We use the LSB of the y coordinate to
determine which line buffer to read from and which line buffer to write to. The external
RAM read is done using a shared expression (RAMPixel) since we need the value from
the RAM in multiple places but only want to perform the actual read once.

In the new version of the edge detector the core loop is now only one clock cycle long
and is executed 255 times per line. One extra clock cycle is required per line for the
initialization of variables and 255 lines are processed. In addition, 255 cycles are required
to initialize the on-chip RAM and one extra clock cycle per frame is required for variable
initialization. This gives a grand total of 65536 clock cycles per frame or an average of
exactly one pixel per clock cycle. Since there is no way of getting the image into or the
results out from the device any faster than this without changing the hardware interface,
we conclude that we have reached the fastest possible solution to our problem.

Running the code version 4

To execute version 4 of the edge detector example Handel-C code:

1. If you have not done so, convert the example BMP file to text data.

~

www.celoxica.com Page 161

DK Design Suite user guide

Celoxica

Open a Command prompt or MS-DOS window, change to the ExampleC\Data

directory and type
bmp2raw source.bmp source.dat 8bppdest.rgb

2. Open the DK edge detector workspace (Examples\Handel-
C\ExampleC\ExampleC.hw) by double-clicking on it.

3. Make the version 4 project current within the ExampleC workspace by
selecting Project>Set Active Project>=Edge_v4.

4. Build and run the project by selecting Build>Build Edge_v4 followed by F5.

5. Convert the output from the edge detector back to a BMP file using the
raw2bmp utility by opening a Command Prompt or MS-DOS window. Change to
the Data directory and type:
raw2bmp 256 dest.dat dest_v4._bmp 8bppsrc.rgb

Data files are read from and written to the \Data directory, since this is set as the
working directory on the Debugger tab in the Project Settings dialog.

11.2.6 Stage 5: Adding hardware interfaces

Once the edge detector program has been simulated correctly you must add the
necessary hardware interfaces.

1. Add read and write procedures.
2. Declare external pins and synchronize the frame grabber.
3. Change the project settings for EDIF, Verilog or VHDL.

Adding macro procedures

There must be two new macro procedures - one to read a word from the host and one to
write a word to the host. These could also be implemented as functions.

The suitably modified code looks like this:

www.celoxica.com Page 162

DK Design Suite user guide

Celoxica

// Read word from host
macro proc ReadWord(Reg)

{
while (ReadReady == 0)
delay;
Read = 1; // Set the read strobe
par
{
Reg = dataB.in; // Read the bus
Read = 0; // Clear the read strobe
}
}

// Write one word back to host
macro proc WriteWord(Expr)

{
par
{
while (WriteReady == 0)
delay;
dataBOut = Expr;
¥
par
{
En = 1; // Drive the bus
Write = 1; // Set the write strobe
}
Write = O; // Clear the write strobe
En = 0; // Stop driving the bus
}

Pins and frame grabber

We need to define the pins for the external RAMs and remove the RAM declarations we

added to simulate the RAMs.

The main program also needs to be modified to include the code to synchronize the

frame grabber with the edge detector.

Compiling for hardware

To compile the edge detector program for EDIF, VHDL or Verilog output, you need to
change the build configuration settings in the DK GUI (Build>Set Active Configuration). You

cannot compile for hardware if you are using Nexus PDK.

The code is not designed for a specific device. You would need to know the appropriate
pins for the device you are targeting. The pin definitions given are examples only and do

not reflect the actual pins available on any particular device.

~

www.celoxica.com

Page 163

DK Design Suite user guide

Celoxica

The code excluding the edge detection and host interface macros

#define LOG2_WIDTH 8
#define WIDTH 256
#define LOG2_HEIGHT 8
#define HEIGHT 256

set clock = external "P1";
unsigned 8 Threshold;

// External RAM definitions/declarations
ram unsigned 8 Source[65536] with {
offchip = 1,
data = {"P1', "P2", "P3", "P4","P5", "P6", "P7"
addr = {"P9", "P10", "P11'", "P12",
"p13', "P14"™, "P15", "P16",
“p17', "Pi8"™, ""P19", "'P20",
p21', "P22", "P23", P24},
we = {"P25"}, oe = {"P26"}, cs = {"P27"}};

ram unsigned 8 Dest[65536] with {

offchip = 1,

data = {'P28'", '"'P29", "P30", "P31",
"p32', "P33", "P34", "P35"},

addr = {"P36'", "P37', "P38", "P39",
"P40', "P41", "'P41", "P43",
""P44', "P45"™, '"'P46'", "P4T7",

""P48', "P49"™, "P50", "P51"},
we = {"P52"}, oe = {"P53"}, cs = {"54"}};

is given below.

. "P8"},

www.celoxica.com

Page 164

DK Design Suite user guide

Celoxica

macro expr ReadRAM(a, b) =
((unsigned 1)0) @ Source[(0@a) + ((0@b) << 8)];
macro proc WriteRAM(a, b, c) Dest[(0@a) + ((0@b)<<8)] = c;

#ifndef SIMULATE
// Host bus definitions/declarations
unsigned 8 dataBOut;

int 1 En = 0;
interface bus_ts clock in(int 4) dataB(dataBOut, En==1) with
{data = {"'P55", "P56'", "P57", "P58"}};

int 1 Write = 0O;
interface bus_out() writeB(Write) with
{data = {"P59"}};

int 1 Read = 0O;
interface bus_out() readB(Read) with
{data = {"P60'"}};

interface bus_clock in(int 1) WriteReady() with
{data = {"P61"}};

interface bus_clock _in(int 1) ReadReady() with
{data = {"P62'"}};
#endif

/*

* Insert edge detect, ReadWord and WriteWord function
* and macro definitions here

*/

void main(void)

{
ReadWord(Threshold);
while(1)
{
unsigned Dummy;
ReadWord(Dummy) ;
edge_detect();
WriteWord(Dummy) ;
}
}

www.celoxica.com Page 165

DK Design Suite user guide

Celoxica

12 Integrating C/C++ files

You can integrate C or C++ files in a Handel-C project built for Debug or Release:

1. Add the C/C++ files to your project (use Project>Add=>Files).

2. Specify the file language
If you are adding a file with a non-standard extension, you may need to right-
click the file to specify its type in File properties.

Edit your Handel-C files to call the C/C++ functions if required.
Set up custom build steps to compile the C/C++ files.
Link the C/C++ files and libraries into your Handel-C project.

o0k w

Build and simulate your project.

You cannot debug C/C++ code in DK, or set breakpoint in it. If you want to build an .exe
file instead of a simulator .dl1 file, change the Simulator compilation command line to specify
this.

If you step into a C/C++ simulation in DK and use the Break or Stop Debugging commands, a
dialog will appear after a few seconds saying: 'Simulator is not responding. Terminate simulation
process?'. Select Yes.

12.1 Calling C/C++ functions from Handel-C

You can call C/C++ library functions from Handel-C code in code built for Debug or
Release:

e by using the extern "language" construct to declare an individual function
e by #including a specific C/C++ header file.

For example:

extern "C"
{
int printf(const char *format, ...);
}
OR
extern "C"
{

#include "myheaderfile._h"

}
You can only link to C/C++ code if you are building for Debug or Release.

If you call a function that requires a user action before the program continues, your DK
simulation may appear to hang. For example, if you make a call to getchar(), you need

~

www.celoxica.com Page 166

DK Design Suite user guide

Celoxica

to press Enter in the DOS program before it will continue executing. Once you have done
this, you can continue using DK GUI commands.

If you want to call functions from the C/C++ standard libraries (e.g. stdlib, stdio), you
may need to copy their function prototypes rather than #including the relevant header
files for successful compilation.

12.2 Compiling and linking in a C/C++ file

If you are integrating a C or C++ file into a Handel-C project, you need to specify custom
build commands and link in the file and any libraries it uses.

Specifying the custom build commands

1. Select the file in the Workspace window and then select Project>Settings>Build
commands.

2. Set the Description to display appropriate text (e.g., Compiling C++ file...)

3. Set the Commands to compile the file. Use quotes around strings if they have
spaces in them.

4. Set the Outputs to be the output file name (e.g. MyProject.obj).
5. Specify any files that need to be built before the current file in the Dependencies.

Linking the C/C++file and library

1. Select the project containing the file.

2. Select the Linker tab on the Project Settings dialog. Add the output file name
(e.g. MyProject.obj) to the Additional C/C++ Modules box.

3. Add the names and paths of any library files used by the C/C++ file to the
Additional C/C++ Modules box. Separate entries by commas.

4. Save the Project settings by pressing the OK button.

12.2.1 Build commands to compile C/C++ files

If you are using C or C++ files in a DK project, you need to specify custom build
commands to compile them for simulation. Custom build commands are specified on the
Build commands tab in Project Settings.

Example commands for building a C/C++ object file to be linked into a
simulation .dll

Visual C++ example: cl -c "$(InputPath)" -Fo MyProject.obj

www.celoxica.com Page 167

DK Design Suite user guide

Celoxica

GCC example: g++ -02 -c "$(InputPath)" -o MyProject.obj (for a C++ file; if you
were building a C file the command would be gcc -02 -c $(InputPath)" -o
MyProject.obj).

You would then specify MyProject.obj as the output file name.

File path strings need to have quotes around them if they contain spaces. The file and
directory macros must also be quoted if the string they represent contains spaces.

Using the Wide Number library

If you are using the Wide Number library, you need to have DK\Sim\Include on the
Include path, using the -1 command. For example:

cl -c -1"C:\Program Files\Celoxica\DK\Sim\Include™ Fred.cpp -Fo Fred.obj

12.3 Calling Handel-C functions from C/C++

You can call Handel-C functions from C or C++ code using the extern "language"
construct. To do so:

e the C/C++ code must reside in a different file to the Handel-C code.

e the widths of parameters must match. If necessary, use the wide number
library to provide type definitions for wide Handel-C variables.

e you must specify a clock in any Handel-C source files containing functions that
are called by the C/C++ code.
1. Build the Handel-C file as an .obj file in DK.

2. Run a build command in your C/C++ compiler to link in the .obj file when you
compile your C/C++ project

C/C++ compiler build commands

e Visual C++: cl -02 -1"InstalIDir\DK\Sim\Include" C++FileName.cpp
HandelCFilleName.obj
e GCC: g++ -w -02 -1"InstalIDir\DK\Sim\Include'" C++FileName.cpp

HandelCFileName.obj -oC++FileName.exe

These commands are for C++ code, for C code use CFileName.c instead of
C++FileName.cpp, and for GCC, use gcc instead of g++.

12.3.1 Calling Handel-C functions from C/C++: example

This example shows how to use the extern construct to use a Handel-C function in your
C++ code.

~

www.celoxica.com Page 168

DK Design Suite user guide

Celoxica

Handel-C:
extern "C++" short wideSum(char a, char b)
{

int 16 result;
result = (int 16)(0 @ a) + (int 16)(0 @ b);
return(result);

}

C++:

extern short wideSum(char a, char b);

void main (void)

{
char x = 10,y = 5;
short result;
result = wideSum(x,y);
}

12.3.2 Calling Handel-C functions from C++: tutorial

This example demonstrates how to use Handel-C functions in your C++ code. The
example files are in Instal IDir\DK\Examples\extern_C\Handel-C in C++.

The example code creates an HDLC protocol. The HDLC (High level Data Link Control)
protocol is a general-purpose protocol that operates at the data link layer (layer 2) of the
OSI reference model. Data is packaged into frames which end with a 16-bit Cyclic
Redundancy Check (CRC) value.

The HDLC code is written in C++ (hdlc.cpp). This code calls a CRC function written in
Handel-C (crc.hcc). HDLCTest.txt contains data to test the HDLC model.

Running the example

1. Open CRC.hw in DK
2. Select Project>Settings, and open the Linker tab.

3. Change the default Simulator compilation command line to compile an .obj
file.

4. Check that the project is in Debug mode and then build it (Build>Build crc).
This should create a file called crc.obj in the Project directory.

5. Open a command prompt and browse to the directory containing the example
files. Use one of the following commands, depending on which C++ compiler
you are using:

Visual C++: cl -02 -1"InstallDir\DK\Sim\Include" hdlc.cpp crc.obj
GCC: g++ -w -02 -I1"InstalIDir\DK\Sim\Include™ hdlc.cpp crc.obj -

~

www.celoxica.com Page 169

DK Design Suite user guide

Celoxica

ohdlc.exe
This should create a file called hdlc.exe in the Project directory.

Double-click the icon of the .exe file to run it. It should use the data in the
test file, HDLCTest. txt, and display notification of the data transmitted:

Data received: 0x03

Data received: 0x07

Data received: 0xOe

12.4 Using extern C: bitonic sort example

This program runs a bitonic sort algorithm (a sort algorithm designed for parallel
processing).

It consists of two files:

ctestbench.c (ANSI-C file): contains functions for filling a buffer with data
and for checking that data is sorted.

mainhc.hcc (Handel-C file): declares the functions in ctestbench.c using the
extern "C" construct, and the standard C library function printf. This file
contains the sorting algorithm. It calls the C function to load the data, applies
the bitonic sort algorithm (using the printf function to display debug
information) and then calls the C function to check the data.

12.4.1 Compiling and simulating the bitonic sort example

1. Open the workspace file

(Instal IDir\DK\Examples\extern_C\bitonic_sort\CTestBench.hw) by
double-clicking on it. DK starts with the CTestBench workspace open.

Check that you are in File View in the Workspace window and click on the + sign
to the left of the chip icon to see what files are within the project.

To examine the code, double-click ctestbench.c or mainhc.hcc.

If you are using GCC (GNU) as your backend compiler, you will need to alter
the custom build commands for ctestbench.c:

Open Project Settings (Project>Settings)

Click on the + next to the CTestBench project in the left hand pane to display
the project files, and select ctestbench.c.

Select the Build commands tab.

Change the line shown in the Commands window to:
gcc -c "$(InputPath)" -o "$(TargetDir)\ctestbench.obj"

Select Outputs in the View box. Ensure that the Outputs box shows the correct
location of the output file (e.g. $(TargetDir)\CTestBench.obj). Do not put
the output file location in quotes.

~

www.celoxica.com Page 170

DK Design Suite user guide

Celoxica

The output file and location must also be specified in the Additional C\C++ Modules
field on the Linker tab in Project Settings.

5. Build the example in Debug mode by selecting Build CTestBench from the Build
menu, or pressing F7.

6. Start the debugger by pressing F5. Alternatively, press F11 to step through
the simulation, and advance to the end (Ctrl+F11).

If you run to the end you should see a command window with the following messages:
Getting data from external C routine...

Sorting data...
Checking data. ..
Data correct!

Stop the debugger by pressing Shift F5.

12.5 Porting C++ to Handel-C: HDLC example

The High-level Data Link Control (HDLC) protocol is a general-purpose protocol that
operates at the data link layer (layer 2) of the OSI reference model. Data is packaged
into frames which end with a 16-bit Cyclic Redundancy Check (CRC) value.

The program consist of two files:

e hdlc.cpp (C++file)
e CRC.hch (Handel-C file)

The program takes data as a bitstream from an input file, HDLCTest . txt, packs it into
frames, and performs error checking using a CRC function. When you simulate the
program, the results are displayed in a command window.

It demonstrates a stage in porting a HDLC program from software to hardware, where
the main function and the function that calculates the CRC value is moved from C++ to
Handel-C.

You can compile and simulate the program entirely in C++ (using a C++ compiler), or
link to some of the C++ functions in Handel-C, and build and simulate the program using
DK.

12.5.1 Description of the HDLC example

To examine the code:

1. Open the workspace file (DK\Examples\extern_C\HDLC\HDLC.hw) by double-
clicking on it. DK starts with the HDLC workspace open.

2. Check that you are in file view and click on the + sign to the left of the chip
icon to see what files are within the project.

www.celoxica.com Page 171

DK Design Suite user guide

Celoxica

3. To examine the code, double-click hdlc.cpp or CRC.hcc.

The program consists of four functions

e main: calls the receiver function
e GetBit opens a file and reads a bit from it
e CRCGen: generates the CRC value
e Receiver calls GetBit, packs the bits into a frame, and calls the CRC checking
function
Both files contain two #define statements at the start. One of these will be commented
out, for example:

//#define SOFTWARE
#define HARDWARE

If the #define SOFTWARE remains (#define HARDWARE is commented out), the code in
CRC.hcc will not be built due to the #ifdef HARDWARE statements and the CRCGen
function and the main function in hdlc.cpp will be used.

If the #define HARDWARE remains (#define SOFTWARE is commented out), the main
function runs in Handel-C and the program can be simulated using DK. The CRCGen
function is also shifted to Handel-C.

The Handel-C file declares the external C++ function receiver, and makes the CRCGen
function available to C linkage using the extern 'C++" construct. The C++ file declares
the extern function CRCGen.

The program runs main in Handel-C, calls receiver in C++, which then calls CRCGen in
Handel-C.

In order to use the DK debugger, main() must be in the Handel-C program.

12.5.2 Compiling and simulating the HDLC example

You can compile the HDLC example entirely for software, using a C++ compiler, or
compile part for hardware and part for software using DK.

Compiling and simulating for software (entirely in C++)

To build the program for software only:

1. Open hdlc.cpp. The file is located in
Instal IDir\DK\Examples\extern_C\HDLC.

2. Comment out the #define HARDWARE statement at the top of the file (and
make sure that #define SOFTWARE is not commented out).

~

www.celoxica.com Page 172

DK Design Suite user guide

Celoxica

3.

4.

In your C++ compiler, set paths to the DK simulation library and include
files: Instal IDir\DK\Sim\Lib and InstalIDir\DK\Sim\Include.

Build and simulate the file using your C++ compiler.

Porting to hardware (split between C++ and Handel-C)

1.

2.
3.

Results

Open the HDLC workspace file in DK
(Instal 1Di r\DK\Examples\extern_C\HdIc\HDLC.hw) by double-clicking on it.

Open crc.hcc in the code editor window by double-clicking one it.

Comment out the #define SOFTWARE statement at the top of the file (and
make sure that #define HARDWARE is not commented out).

Open hdlc.cpp and comment out the #define SOFTWARE statement (and
make sure #define HARDWARE is not commented out).

Check the custom build commands for hdlc.cpp:

Open Project Settings (Project>Settings)

Click on the + next to the HDLC project in the left hand pane to display the
project files, and select hdlc.cpp.

Select the Build commands tab.

Edit the path shown to the DK\Sim\Include directory in the Commands window,
if necessary.

If you use GCC (GNU) as your backend compiler, change the line shown in the
Commands window:

g+t+ -1 "__\.._.\Sim\Include” -c hdlc.cpp -
o"$(TargetDir)\hdlc.obj"

Select Outputs in the View box. Ensure that the Outputs box shows the correct
location of the output file (e.g. $(TargetDir)\hdlc.obj). Do not put the
output file location in quotes.

The output file and location must also be specified in the Additional C\C++ Modules
field on the Linker tab in Project Settings.

Build the project in Debug mode, by selecting Build Hdlc from the Build menu, or
pressing F7.

Start the debugger by pressing F5. Alternatively, press F11 to step through
the simulation, and advance to the end (Ctrl+F11). To end the simulation,

press the Stop Debugging button BF or select Debug>Stop Debugging. After a few
seconds a dialog will appear asking if you want to close the simulation.

You should get the same results for both versions of the program. A command window
will display notification of data transmitted:

Data received: 0x03
Data received: 0x07

Data received: 0xOe

www.celoxica.com Page 173

DK Design Suite user guide Ce’o..-"ca

If you have built the program for software (using the C++ compiler), the command
window will be produced by hdlc.exe. If you have built the program for hardware (using
the DK Handel-C compiler) the command window will be produced by hdlc.dll inside

the DK debugger.

www.celoxica.com Page 174

DK Design Suite user guide

Celoxica

13 Integrating Handel-C with VHDL,
Verilog and EDIF

There are two ways of interfacing Handel-C with external VHDL, Verilog or EDIF blocks:

e Calling a VHDL, Verilog or EDIF component from within a Handel-C project
e Calling a Handel-C component from within a VHDL, Verilog or EDIF project

The Handel-C uses an interface construct to communicate with the HDL/EDIF, but the
way you write the connections is slightly different in these two cases.

If the Handel-C is the top level, it identifies the HDL/EDIF component it must connect to
by using the component's HDL/EDIF name as the Handel-C interface Sort. (For VHDL, if
the ports generated by the Handel-C are of a different type to those used in VHDL, you
will need a wrapper file to connect the two types of ports together.)

If the VHDL, Verilog or EDIF is the top level, the Handel-C needs to use the port_in and
port_out interface sorts to provide connections to the external logic. You must then
write a VHDL, EDIF or Verilog wrapper file to create the wires between the Handel-C
ports and the HDL/EDIF. Sample wrapper files are provided with the examples in the
VHDL, Verilog and EDIF directories within Instal IDir\DK\Examples.

Co-simulating Handel-C with Verilog and VHDL

If you want to co-simulate Handel-C code with VHDL or Verilog you can use the Co-
simulation Bridge for ModelSim. This is provided in Celoxica's Platform Developer's Kit.

13.1 Reset on configuration
Reset on configuration (ROC) is a component that defines the reset behaviour on the
configuration of the FPGA. You need to link to a ROC file when you want to

e simulate VHDL or Verilog produced from DK using a simulator such as
ModelSim

e compile or synthesize Handel-C to VHDL or Verilog to target Xilinx devices,
unless you have specified a global reset (set reset).

1 — Held in reset

] Reset released; design starts

RESET ON CONFIGURATION DIAGRAM

www.celoxica.com Page 175

DK Design Suite user guide

Celoxica

You need to compile the appropriate VHDL (*.vhd) or Verilog (*.v) file into your work
library. Two different versions of the ROC files are supplied:

e simroc.vhd or simroc.v - Simulation ROC. Use these when simulating VHDL
or Verilog.

e Xxilroc.vhd or xilroc.v - Xilinx ROC. These instantiate the standard Xilinx
ROC component. If you wish for different behaviour, you will need to replace
the file. Refer to Xilinx documentation on the ROC component.

If you are targeting Altera or Actel devices, you do not need a ROC file; flip-flops are
automatically reset to zero after configuration.

13.2 Integrating with VHDL blocks

If you want to co-simulate Handel-C with VHDL you can use the Co-simulation Bridge for
ModelSim, provided as part of the Platform Developer's Kit.

13.2.1 Linking to the Handel-C VHDL library

Celoxica supplies the HandelC.vhd file which provides functions needed by all Handel-C
VHDL files.

To use Handel-C VHDL, you must compile the HandelC.vhd file into a library called
HandelC in Precision, LeonardoSpectrum or Synplify.

Consult the documentation for your synthesis or simulation tool on compiling library files.

If you are targeting a Xilinx device or want to simulate your VHDL code in ModelSim, you
need to compile one of the supplied ROC files into your work library. You only need to do
this if the global reset (set reset) is not specified.

e For simulation, use simroc.vhd
e For Xilinx devices, use xilroc.vhd

You do not need to use a ROC file to target Altera or Actel devices as flip-flops are
automatically reset to zero after configuration.

13.2.2 Writing Handel-C code to integrate with VHDL code

Using Handel-C as the top level

In a top-level Handel-C program communicating with a VHDL entity you will need:

www.celoxica.com Page 176

DK Design Suite user guide

Celoxica

An interface Prototypes the interface sort. The interface sort must have the same

declaration: name as the VHDL entity. If you have only one instance of the entity in
your code, and you are not referring forward to a definition, you may
incorporate the declaration into the definition.

An interface Names the instance and defines the data that will be transmitted.
definition:

Using VHDL as the top level

In a Handel-C program communicating with a top-level VHDL entity, you only need a
port_in or port_out interface for each port going into or out of the Handel-C
component.

Handel-C to VHDL: interface declaration

The VHDL interface declaration in the Handel-C code prototypes the interface sort, and is
of the format:

interface VHDL_entity_sort
(VHDL_to_HC_port {,VHDL_to HC port }) //input ports
(vHDL_from_HC port {, VHDL_ from_HC port}); //output ports

where:
e VHDL_entity sort is the name of the HDL component. The same name must
be used as the interface sort in the interface definition.
e VHDL_to HC_port is the type and name of a port bringing data to the Handel-
C code (output from VHDL) as specified in the VHDL entity.

e VHDL_from_HC_port is the type and name of a port sending data from the
Handel-C code (input to VHDL) as specified in the VHDL entity.

Note that ports are seen from the VHDL side, so port names may be confusing. In
Handel-C, the ports that input data TO the Handel-C must be specified first.

Handel-C to VHDL: interface definition

The VHDL interface definition in the Handel-C code creates an instance of the interface
sort prototyped in the declaration. It also gives the names of the interface and port
instances and defines the data that will be transmitted.

The definition is of the format:

interface VHDL entity_sort
(VHDL_to_HC_port [with portSpec]
{, VHDL_to HC port [with portSpec]})
interface_ Name
(vHDL_from_HC_port = from_HC data [with portSpec]
{, VHDL_from_HC port = from HC data [with portSpec]});

~

www.celoxica.com Page 177

DK Design Suite user guide

Celoxica

where:

e VHDL_entity_ sort is the interface sort that you previously declared.

e VHDL_to HC port is the type and name of a port bringing data to the Handel-

C code (output from VHDL). This will have the same type as defined in the
interface declaration.

e interface_Name is the name for this instance of the interface.

e VHDL_from HC_port is the type and name of a port sending data from the
Handel-C code (input to VHDL). This will have the same type as defined in the
interface declaration.

e from HC data is an expression that is output from the Handel-C to the VHDL.

e with portSpec is an optional port specification.

13.2.3 Example: VHDL within a Handel-C project

The example below demonstrates how to interface Handel-C and VHDL components,
when Handel-C is the top level of your design.

Handel-C code

set clock = external "D17";
unsigned 4 x;
interface vhdl_component
(unsigned 4 return_val)
vhdl_component_instance

(unsigned 1 clk = _ clock,
unsigned 4 sent_value = x) with {busformat = "B_I1"};
void main(void)
{
unsigned 4 y;
y = vhdl_component_instance.return_val; // Read from VHDL component
X =y; // Write to VHDL component
}
VHDL code

The VHDL entity will need an interface like this to be compatible with the Handel-C:

www.celoxica.com Page 178

DK Design Suite user guide

Celoxica

entity vhdl _component is

port (
clk :in std_logic;
sent_value 0 : in std_logic;
sent _value 1 : in std_logic;
sent_value 2 : in std_logic;
sent _value 3 : in std_logic;

return_val 0O : out std logic;

return_val_1 - out std _logic;

return_val 2 : out std logic;

return_val_3 : out std logic
E

end;

Note that all the ports are 1-bit wide, std_logic types. This matches to the EDIF
generated using the "'B_1"" busformat. Using a different busformat specification will give
two 4-bit ports and one 1-bit port, but you need to ensure that the format matches the
output from your synthesis tool.

13.2.4 Example: Handel-C in a VHDL project

The example below demonstrates how to interface Handel-C and VHDL components,
when VHDL is the top level of your design. The Handel-C needs to have ports to its top
level, so that the VHDL can connect to them.

unsigned 4 x;

interface port_in
(unsigned 1 clk with {clockport=1})
ClockPort
O:
interface port_in
(unsigned 4 sent_value)
InPort

O:

www.celoxica.com Page 179

DK Design Suite user guide

Celoxica

interface port _out

O
OutPort

(unsigned 4 return_value = x);
set clock = internal ClockPort.clk;

void main(void)

{
unsigned 4 y;
y = InPort.sent_value; // Read from top-level VHDL
X = Y; // Write to top-level VHDL
}

You can compile the Handel-C to EDIF or VHDL. If you compile to EDIF, you can use the
busformat specification to specify the bus and wire name format.

VHDL code

The top level VHDL must instantiate the Handel-C. The way you do this is slightly
different for Handel-C targeting EDIF and Handel-C targeting VHDL. The example below
shows EDIF generating a bus as single wires.

Instantiating Handel-C code compiled to EDIF
component handelc_component

port (
clk : in std_logic;
sent_value O : in std_logic;
sent_value_ 1 : in std_logic;
sent _value 2 : in std_logic;
sent_value 3 : in std_logic;

return_val O : out std logic;

return_val_1 : out std logic;

return_val_2 : out std _logic;

return_val 3 : out std logic
)

end component;

Instantiating Handel-C code compiled to VHDL

component handelc_component
port (
clk : in std_logic;
sent_value : in unsigned (3 downto 0);
return_val : out unsigned (3 downto 0);
)

end component;

www.celoxica.com Page 180

DK Design Suite user guide

Celoxica

13.2.5 Synthesizing Handel-C with external VHDL

Synthesis and place and route

When you are ready to synthesize, you may follow a VHDL or EDIF flow:

e VHDL flow
Compile the Handel-C to VHDL.

Use Precision, Synplify or LeonardoSpectrum to synthesize the code. Then use
Xilinx, Altera or Actel tools to place and route it.

e EDIF flow
Compile Handel-C to EDIF.

Use Precision, Synplify or LeonardoSpectrum to synthesize any VHDL
components to EDIF. Use Xilinx, Altera or Actel tools to merge the EDIF files
together and place and route them.

Simulation

You can co-simulate Handel-C code with VHDL using ModelSim: compile the Handel-C for
debug, and then use the Co-simulation Bridge for ModelSim supplied in the Platform
Developer's Kit.

13.2.6 Connecting Handel-C EDIF to VHDL

If you compile a Handel-C file to EDIF 2.0.0 and wish to connect it to a VHDL component,
you must be aware that the ports in EDIF and VHDL may be different:

e EDIF 2.0.0 ports may consist of a collection of single wires or a n-wire bus.
e VHDL ports are normally described as n-bit wide cables.

e The format of the EDIF port can be defined using the Handel-C busformat
specification. The particular format needed is dependent upon the synthesis
tool. For example, LeonardoSpectrum generates angle-brackets to delimit
buses, so the busformat specification used to generate a multi-wire bus would
be busformat = "B<N:0>".

If you have not used busformat to generate a multi-wire bus, you can ensure that the
generated EDIF can connect to the VHDL by listing the VHDL ports as single-bit wires.

13.3 Integrating with Verilog blocks

If you want to co-simulate Handel-C with Verilog you can use the Co-simulation Bridge
for ModelSim, provided as part of the Platform Developer's Kit.

~

www.celoxica.com Page 181

DK Design Suite user guide

Celoxica

13.3.1 Linking to the Handel-C Verilog library

Celoxica supplies the HandelC.v file which provides functions needed by all Handel-C
Verilog files.

To use Handel-C Verilog, you must add HandelC.v to your work library within Precision,
LeonardoSpectrum or Synplify.

If you are targeting a Xilinx device or want to simulate your Verilog code using ModelSim,
you need to compile one of the supplied ROC files into your work library.

e For simulation, use simroc.v
e For Xilinx devices, use xilroc.v
You only need to do this if the global reset (set reset) is not specified. You do not need to

use a ROC file to target Altera or Actel devices as flip-flops are automatically reset to
zero after configuration.

13.3.2 Writing Handel-C code to integrate with Verilog code

Using Handel-C as the top level

In a top-level Handel-C program communicating with a Verilog module you will need:
An interface Prototypes the interface sort. The interface sort must have the same
declaration: name as the Verilog module. If you have only one instance of the Verilog

module in your code, and you are not referring forward to a definition,
you may incorporate the declaration into the definition.

An interface Names the instance and defines the data that will be transmitted.
definition:

Using Verilog as the top level

In a Handel-C program communicating with a top-level Verilog entity, you only need a
port_in or port_out interface for each port going into or out of the Handel-C
component.

Handel-C to Verilog: interface declaration

The Verilog interface declaration in the Handel-C code prototypes the interface sort, and
is of the format:

interface Verilog module_sort
(Verilog_to HC port {,Verilog to HC port}) //input ports
(Verilog_from HC port {,Verilog from HC port}); //output ports

where:

~

www.celoxica.com Page 182

DK Design Suite user guide

Celoxica

e Verilog module_sort is the name of the Verilog module. The same name
must be used as the interface sort in the interface definition.

e Verilog to HC port is the type and name of a port bringing data to the
Handel-C code (output from Verilog) as specified in the Verilog module.

e Verilog_from_HC_port is the type and name of a port sending data from the
Handel-C code (input to Verilog) as specified in the Verilog module.

Note that ports are seen from the Verilog side, so port names may be confusing. In
Handel-C, the ports that input data TO the Handel-C must be specified first.

Handel-C to Verilog: interface definition

The Verilog interface definition in the Handel-C code creates an instance of the interface
sort prototyped in the declaration. It also gives the names of the interface and port
instances and defines the data that will be transmitted.

The definition is of the format:

interface Verilog _module_sort
(Verilog_to HC port [with portSpec]
{, Verilog_to HC port [with portSpec]})
interface_ Name
(Verilog_from HC port = from_HC data [with portSpec]
{, Verilog from_HC port = from HC data [with portSpec]});

where:

e Verilog _module_sort is the interface sort that you previously declared.

e Verilog_to HC_port is the type and name of a port bringing data to the
Handel-C code (output from Verilog). This will have the same type as defined
in the interface declaration.

e interface_Name is the name for this instance of the interface.

e Verilog from HC port is the type and name of a port sending data from the
Handel-C code (input to Verilog). This will have the same type as defined in
the interface declaration.

e from_HC_data is an expression that is output from the Handel-C to the
Verilog.

e with portSpec is an optional port specification.

13.3.3 Example: Verilog in a Handel-C project

The example below demonstrates how to interface Handel-C and Verilog components,
when Handel-C is the top level of your design.

~

www.celoxica.com Page 183

DK Design Suite user guide

Celoxica

Handel-C code

set clock = external "D17";
unsigned 4 x;

interface verilog_component
(unsigned 4 return_val)
verilog_component_instance
(unsigned 1 clk = _ clock,
unsigned 4 sent_value = x)
with {busformat = "B_1"};

void main(void)

{

unsigned 4 y;

y = verilog_component_instance.return_val; // Read from Verilog
component

X =y; // Write to Verilog component

}

Verilog code
The Verilog module will need an interface like this to be compatible with the Handel-C:

module verilog_component(clk, sent value 0, sent_value_1, sent value 2,
sent_value_ 3, return_val 0, return_val 1,
return_val_2, return_val_3);
input clk;
input sent_value O;
input sent _value 1;
input sent_value 2;
input sent_value_ 3;
output return_val O;
output return_val _1;
output return_val_2;
output return_val_3;

endmodule

Note that all the ports are 1-bit wide. This matches to the EDIF generated using the

"B 1" busformat. Using a different busformat specification will give give two 4-bit ports
and one 1-bit port, but you need to ensure that the format matches the output from your
synthesis tool.

www.celoxica.com Page 184

DK Design Suite user guide

Celoxica

13.3.4 Example: Handel-C in a Verilog project

The example below demonstrates how to interface Handel-C and Verilog components,
when Verilog is the top level of your design. The Handel-C needs to have ports to its top
level, so that the Verilog can connect to them.

unsigned 4 Xx;

interface port_in
(unsigned 1 clk with {clockport=1})
ClockPort

O:

interface port_in
(unsigned 4 sent_value)
InPort

O;
interface port_out
O
OutPort
(unsigned 4 return_value = x);

set clock = internal ClockPort.clk;

void main(void)

{
unsigned 4 y;
y = InPort.sent value; // Read from top-level Verilog
X = Y; // Write to top-level Verilog
}

You can compile the Handel-C to EDIF or to Verilog. If you compile to EDIF, you can use
the busformat specification to specify the bus and wire name format.

Verilog code

The top level Verilog must instantiate the Handel-C. The way you do this is slightly
different for Handel-C targeting EDIF and Handel-C targeting Verilog. The example below
shows EDIF generating a bus as single wires

www.celoxica.com Page 185

DK Design Suite user guide

Celoxica

Instantiating Handel-C code compiled to EDIF

module handelc_component(clk, sent value 0, sent value 1, sent value 2,

input
input
input
input
input
output
output
output
output

endmodule

sent_value 3, return_val 0, return_val 1,
return_val 2, return_val _3);

clk;

sent_value O;

sent_value_1;

sent_value 2;

sent_value_3;

return_val _O;

return_val_1;

return_val _2;

return_val_3;

Instantiating Handel-C code compiled to Verilog

module handelc_component(clk, sent value, return_val);

input
input
output

clk;
[3:0] sent_value;
[3:0] return_val;

endmodule

13.3.5 Synthesizing Handel-C with external Verilog

Synthesis and place and route

When you are ready to synthesize, you may follow a Verilog or EDIF flow:

Verilog flow
Compile the Handel-C to Verilog.

Use Precision, Synplify or LeonardoSpectrum to synthesize the code. Then use
Xilinx, Altera or Actel tools to place and route it.

EDIF flow
Compile Handel-C to EDIF.

Use Precision, Synplify or LeonardoSpectrum to synthesize any Verilog
components to EDIF. Use Xilinx, Altera or Actel tools to merge the EDIF files
together and place and route them.

www.celoxica.com Page 186

DK Design Suite user guide

Celoxica

Simulation

You can co-simulate Handel-C code with Verilog using ModelSim: compile the Handel-C
for debug, and then use the Co-simulation Bridge for ModelSim supplied in the Platform
Developer's Kit.

13.3.6 Connecting Handel-C EDIF to Verilog

If you compile a Handel-C file to EDIF 2.0.0 and wish to connect it to a Verilog
component, you must be aware that the ports in EDIF and Verilog may be different:

e EDIF 2.0.0 ports may consist of a collection of single wires or a n-wire bus.
e Verilog ports are normally described as n-bit wide cables.

e The format of the EDIF port can be defined using the Handel-C busformat
specification. The particular format needed is dependent upon the synthesis
tool. For example, LeonardoSpectrum generates angle-brackets to delimit
buses, so the busformat specification used to generate a multi-wire bus would
be busformat = "B<N:0>".

If you have not used busformat to generate a multi-wire bus, you can ensure that the
generated EDIF can connect to the Verilog by listing the Verilog ports as single-bit wires.

13.4 Integrating with EDIF blocks

13.4.1 Connecting Handel-C EDIF to external EDIF

To integrate Handel-C with raw EDIF:

e Use Handel-C as the top level of your design and instantiate one or more EDIF
components as black boxes, by defining interfaces.

OR

e Use EDIF as the top level of your design and instantiate one or more Handel-C
components as black boxes. Handel-C ports to the top level are declared using
port_in and port_out interfaces.

Port formats

If you compile a Handel-C file to EDIF and want to connect it to a raw EDIF component,
you must be ensure that port formats match between a component instantiation and a
component instance. The Handel-C busformat specification allows you to specify EDIF
bus formats on a per-port basis, allowing maximum flexibility to connect to raw EDIF
from any source.

~

www.celoxica.com Page 187

DK Design Suite user guide

Celoxica

Simulating a Handel-C/EDIF design

If you want to simulate a design composed of EDIF and Handel-C blocks, use your place
and route tools to generate a post-PAR annotated VHDL netlist. The netlist can then be
used to run a timing-accurate simulation using ModelSim.

13.4.2 Writing Handel-C code to integrate with external EDIF

In a Handel-C program communicating with EDIF you will need:

An interface Prototypes the interface sort. The interface sort must have the same

declaration: name as the black box or primitive. If you have only one instance of the
logic block in your code, and you are not referring forward to a definition,
you may incorporate the declaration into the definition.

An interface Names the instance and defines the data that will be transmitted.

definition:

Handel-C to EDIF: interface declaration

The EDIF interface declaration in the Handel-C code prototypes the interface sort, and is
of the format:

interface EDIF_symbol
(EDIF_to_HC_port {,EDIF_to HC port }) //input ports to Handel-C
(EDIF_from_HC port {, EDIF_from HC port}); //output ports from Handel-C

where:
e EDIF_symbol is the name of the EDIF symbol. The same name must be used
as the interface sort in the interface definition.

e EDIF_to HC port is the type and name of a port bringing data to the Handel-
C code (output from EDIF) as specified in the unwrapped EDIF symbol.

e EDIF_from HC port is the type and name of a port sending data from the
Handel-C code (input to EDIF) as specified in the unwrapped EDIF symbol.

Note that ports are seen from the EDIF side, so port names may be confusing. In Handel-
C, the ports that input data TO the Handel-C must be specified first.

Handel-C to EDIF: interface definition

The EDIF interface definition in the Handel-C code creates an instance of the interface
sort prototyped in the declaration. It also gives the names of the interface and port
instances and defines the data that will be transmitted.

The definition is of the format:

www.celoxica.com Page 188

DK Design Suite user guide

Celoxica

interface EDIF_symbol
(EDIF_to_HC_port [with portSpec]
{, EDIF_to HC port [with portSpec]})
interface_ Name
(EDIF_from_HC port = from_HC data [with portSpec]
{, EDIF_from_HC port = from HC data [with portSpec]});

where:

e EDIF_symbol is the interface sort that you previously declared.

e EDIF_to HC port is the type and name of a port bringing data to the Handel-
C code (output from EDIF). This will have the same type as defined in the
interface declaration.

e interface_Name is the name for this instance of the interface.

e EDIF_from HC port is the type and name of a port sending data from the
Handel-C code (input to EDIF). This will have the same type as defined in the
interface declaration.

e from HC data is an expression that is output from the Handel-C to the EDIF.

e with portSpec is an optional port specification, e.g. busformat.

13.4.3 Example: Handel-C in an EDIF project

The example below demonstrates how to interface Handel-C and external EDIF
components, when the external EDIF is the top level of your design.

Handel-C code

The Handel-C needs to have ports to its top level so that the EDIF can connect to them.

www.celoxica.com Page 189

DK Design Suite user guide

Celoxica

unsigned 4 val;

interface port_in
(unsigned 1 clk)
ClockPort

O
with {busformat = "B<N:0>"};

interface port_in
(unsigned 4 sent_val)
Val InPort

O
with {busformat = "B<N:0>"};

interface port_out

O
ValOutPort

(unsigned 4 return_val = val)
with {busformat = "B<N:0>"};

set clock = internal ClockPort.clk;

void main(void)

{
while(1)
{
par
{
val *= VallnPort.sent val;
by
}
be

EDIF netlist produced from the Handel-C code
The part of the netlist that describes the interface reads:

(interface
(port (array (rename clk "clk<0:0>") 1) (direction INPUT))
(port (array (rename sent_val "sent_val<3:0>") 4) (direction INPUT))
(port (array (rename return_val "return_val<3:0>'") 4) (direction OUTPUT))

)
EDIF code

The external EDIF code needs to instantiate the EDIF block generated from the Handel-C
code:

~

www.celoxica.com Page 190

DK Design Suite user guide

Celoxica

(cell edif_component
(cellType GENERIC)
(view view_1
(viewType NETLIST)
(interface
(port (array (rename clk "clk<0:0>'"") 1) (direction INPUT))
(port (array (rename sent_val "sent_val<3:0>") 4) (direction INPUT))

(port (array (rename return_val "return_val<3:0>") 4) (direction
OUTPUT))

)
)
)

13.4.4 Example: EDIF component in a Handel-C project

The example below demonstrates how to interface Handel-C and external EDIF
components, when Handel-C is the top level of your design.

www.celoxica.com Page 191

DK Design Suite user guide

Celoxica

Handel-C code

set clock = external "'D17";
unsigned 4 x;
interface edif_component

(

unsigned 4 return_val

)

edif_component_instance

(

y = edif_component_instance.return_val; // read from EDIF component

unsigned 1 clk = _ clock,
unsigned 4 sent_val = x
)
with
{
busformat = "B"
}:
void main(void)
{
unsigned 4 y;
while(1)
{
X +=y; // write to EDIF component
}
}

EDIF netlist produced from Handel-C code

The code above generates a component (black-box) instantiation in the EDIF netlist,

which looks like this:

(cell edif_component
(cellType GENERIC)
(view view_1

(viewType NETLIST)
(interface

(port (array clk 1) (direction INPUT))
(port (array sent_val 4) (direction INPUT))
(port (array return_val 4) (direction OUTPUT))

)
)
)

www.celoxica.com

Page 192

DK Design Suite user guide

Celoxica

EDIF code

There needs to be an EDIF netlist for the black-box component, called
edif_component, with ports which look like this:

(interface
(port (array clk 1) (direction INPUT))
(port (array sent_val 4) (direction INPUT))
(port (array return_val 4) (direction OUTPUT))

)

13.5 Examples: integrating Handel-C with VHDL,
Verilog and EDIF

VHDL examples
Instal IDir\DK\Examples\VHDL

e Example 1: combinational circuit example (Handel-C top-level)
e Example 2: register bank circuit example (Handel-C top-level)
e Example 3: FIR Filter example (VHDL top-level wrapper)

Verilog examples
Instal IDir\DK\Examples\Verilog

e Example 1: combinational circuit example (Handel-C top-level)
e Example 2: register bank circuit example (Handel-C top-level)
e Example 3: FIR Filter example (Verilog top-level wrapper)

EDIF example
Instal IDir\DK\Examples\EDIF

e Example 3: FIR filter example (EDIF top-level wrapper)

13.5.1 Integration examples: running

To synthesize the VHDL, Verilog or EDIF integration examples, you must:
1. Change the build configuration to EDIF, VHDL or Verilog as appropriate
(Build>Set Active Configuration).

2. For Verilog or VHDL examples, choose the HDL output style: select
Project=>Settings>Linker, and then chose an output style from the drop-down list.
Choose the style that matches your RTL synthesis tool, or else choose Generic.

3. For Verilog or VHDL examples, pass the DK-generated .v or .vhd files, the .v
or .vhd example files (tt17446, reg32xlk or filter/wrapper) and the

~

www.celoxica.com Page 193

DK Design Suite user guide

Celoxica

Handel-C support file (HandelC.v or HandelC.vhd) to your synthesis tool. If
you are targeting a Xilinx platform you also need to pass the appropriate ROC
file (xilroc.v or xilroc.vhd).

4. Run place and route.

You can only compile these examples if you have the full version of DK. Nexus PDK does
not allow you to produce VHDL, Verilog or EDIF code.

13.6 Examples of interfacing to VHDL

Examples are supplied of three projects involving interfaces to VHDL blocks. The
examples are installed in the directory DK\Examples\vhdl.

Each consists of a Handel-C workspace, the VHDL code file for the circuit, a VHDL
wrapper file that links the VHDL to the Handel-C, and a Handel-C file that connects to the
VHDL circuit. If the Handel-C is the top level, it connects to the VHDL via an entity
interface. If the VHDL is top-level, the Handel-C connects using port_in and port_out
interfaces.

You can only compile these examples if you have the full version of DK.

e Example 1: combinational circuit example (Handel-C top-level)
e Example 2: register bank circuit example (Handel-C top-level)
e Example 3: FIR Filter example (VHDL top-level wrapper)

13.6.1 Combinational circuit example: VHDL

The combinational circuit example (InstallDir\DK\Examples\VHDL\Examplel) consists
of these files:

ttl7446.vhd VHDL code that describes the combinational circuit
ttl7446_test.hcc Handel-C code that uses the combinational circuit

You can open the files in a text editor such as Notepad. The example also includes DK
workspace and project files.

Combinational circuit example: interface code to VHDL

The example defines an interface sort that has port names of the same name and type as
the VHDL signals in the circuit to be integrated. The interface sort must be the same as
the VHDL model's name.

The interface from tt17746_test.hcc is:

www.celoxica.com Page 194

DK Design Suite user guide

Celoxica

interface TTL7446
(unsigned 7 segments, unsigned 1 rbon)
decode
(unsigned 1 Itn=1tnvVal, unsigned 1 rbin=rbinval,
unsigned 4 digit=digitvVal, unsigned 1 bin=binval);

TTL7446 is the name of the interface sort.

Ports declared by the interface

Port name Zic:gction Port type
Itn out std_logic
rbin out std_logic
digit out unsigned (3 downto 0)
bin out std_logic
segments in unsigned (6 downto 0)

rbon std_logic

13.6.2 Register bank example: VHDL

The register bank example (Instal IDi r\DK\Examples\VHDL\Example2) consists of these
files:

reg32x1k.vhd VHDL code that describes the register bank circuit
reg32x1k_test.hcc Handel-C code that uses the register bank

You can open the files in a text editor such as Notepad. The example also includes DK
workspace and project files.

Register bank example: interface code to VHDL

The example defines an interface sort that has port names of the same name and type as
the VHDL signals in the circuit to be integrated. The interface sort must be the same as
the VHDL model's name.

The interface from reg32x1k_test.hcc is:

www.celoxica.com Page 195

DK Design Suite user guide

Celoxica

interface reg32xlk

(unsigned 32 data out)

registers

(unsigned 10 address = addressVal

with {extpath = {registers.data_out}},
unsigned 32 data in = data_inval,
unsigned 1 ck = _ clock,
unsigned 1 write = writeval);

reg32xlk is the name of the interface sort.

Ports declared by the interface

Port name Port Port type

direction
data_out in unsigned (31 downto 0)
address out unsigned (9 downto 0)
data_in out unsigned (31 downto 0)
ck out std_logic
write out std_logic

13.6.3 FIR filter example files: VHDL

The FIR filter example (Instal IDir\DK\Examples\VHDL\Example3) consists of these

files:

filter.vhd

receiver.hcc

wrapper .vhd

VHDL code that describes the FIR filter

Handel-C code that receives a bit stream, performs a volume change
on it if required and converts it to 8-bit data

top-level VHDL wrapper that connects the filter to the receiver

www.celoxica.com

Page 196

DK Design Suite user guide

Celoxica

You can open the files in a text editor such as Notepad.

reset
WHOL wrapper wrapper vhd
Dataln Handel-C code YHOL filter code
1 receiver hcc fitter .whd
+.- E [compiled to YHDLEDIF)
Dataln
Wal a
4 Datalut g Dataln
7;» e, FilterIn
Y Wal
Py -r—m—— — — — — — — — — — — — | By
Aok —————— — — — — — — — — Ack Datalut \
. g
Dat alut
T
ReceiwverClock FilterClack

LOGIC BLOCKS IN THE FIR FILTER EXAMPLE

The example also includes DK workspace and project files.

FIR filter example: interface code to VHDL

The Handel-C receiver is a component in a VHDL design. If your top-level code is VHDL,
you must use the port_in and port_out interface types to communicate with the VHDL.
The interfaces must have port names of the same name and type as the VHDL signals in
the wrapper connecting to the Handel-C component to be integrated.

The interfaces between receiver.hcc and the VHDL wrapper are:

interface port_in //interface type must be port_in or
port_out

(unsigned 1 Dataln) // single bit input port - name used in
VHDL

ReadData // name of instance of port_in

O // no output ports

with {vhdl_type = "std_logic_vector"}; //standard logic ports

www.celoxica.com Page 197

DK Design Suite user guide

Celoxica

interface port _out //interface type must be port_in or
port_out

O // no input ports

WriteData // name of instance of port_out

(unsigned 8 DataOut = Bytes out) //8 bit wide output port (hame used in
VHDL)

with {vhdl_type = "'std_logic_vector"}; //standard logic ports
interface port_out //interface type must be port_in or
port_out

O // no input ports

WriteRdy // name of instance of port_out

(unsigned 1 Rdy = DataReady); //name of output signal and its value
interface port_in //interface type must be port_in or port_out

(unsigned 1 Ack) // single bit input port - name used in VHDL

ReadAck // name of instance of port_in

O: // no output
interface port_in //interface type must be port_in or
port_out

(unsigned 4 Vol) //4 bit wide input port (name used in
VHDL)

Volume // name of instance of port_in

O // no output

with {vhdl _type = "std_logic vector"}; //standard logic ports

Ports declared by the interfaces

Port name Port Port type

direction
Dataln in std_logic_vector (0 downto 0)
DataOut out std_logic_vector (7 downto 0)
Rdy out std_logic
Ack in std_logic
Vol in std_logic_vector (3 downto 0)

13.7 Examples of interfacing to Verilog

Examples are supplied of three projects interfacing to Verilog blocks. The examples are
installed in the directory DK\Examples\Verilog.

Each consists of a Handel-C workspace, a Verilog code file for a circuit, a Verilog wrapper
file that links the Verilog to the Handel-C, and a Handel-C file. If the Handel-C file is the

~

www.celoxica.com Page 198

DK Design Suite user guide

Celoxica

top level, it connects to the Verilog via a module interface. If the Verilog is top-level, the
Handel-C connects using port_in and port_out interfaces.

You can only compile these examples if you have the full version of DK.

13.7.1 Combinational circuit example: Verilog

The combinational circuit example (Instal IDi r\DK\Examples\Verilog\Examplel)
consists of these files:

ttl7446.v Verilog code that describes the combinational circuit
tt17446_test.hcc Handel-C code that uses the combinational circuit

You can open these files in a text editor such as Notepad. The example also includes DK
workspace and project files.

Combinational circuit example: interface code to Verilog

The example defines an interface sort that has port names of the same name as the
Verilog signals in the circuit to be integrated. The interface sort must be the same as the
Verilog model's name.

The interface from ttl7746_test.hcc is:

interface TTL7446
(unsigned 7 segments, unsigned 1 rbon)
decode
(unsigned 1 Itn=1tnval, unsigned 1 rbin=rbinval,
unsigned 4 digit=digitval, unsigned 1 bin=binval);

TTL7446 is the name of the interface sort.

Ports declared by the interface

Port name Port direction
Itn out

rbin out

digit out

bin out

segments in

rbon in

www.celoxica.com Page 199

DK Design Suite user guide

Celoxica

13.7.2 Register bank example: Verilog

The register bank example (Instal IDi r\DK\Examples\Verilog\Example2) consists of
these files:

reg32x1k.v Verilog code that describes the register bank circuit
reg32x1k_test.hcc Handel-C code that uses the register bank

You can open the files in a text editor such as Notepad. The example also includes DK
workspace and project files.

Register bank example: interface code to Verilog

The example defines an interface sort that has port names of the same name as the
Verilog signals in the circuit to be integrated. The interface sort must be the same as the
Verilog model's name.

The interface from reg32x1k_test.hcc is:

interface reg32xlk
(unsigned 32 data out)
registers
(unsigned 10 address = addressVal
with {extpath = {registers.data_out}},
unsigned 32 data in = data_inval,
unsigned 1 ck = _ clock,
unsigned 1 write = writeval);

reg32xlk is the name of the interface sort.

Ports declared by the interface

Port name Port direction
data out in

address out

data_in out

ck out

write out

13.7.3 FIR filter example files: Verilog

The FIR filter example (Instal IDir\DK\Examples\Verilog\Example3) consists of these
files:

~

www.celoxica.com Page 200

DK Design Suite user guide

Celoxica

filter.v

receiver.hcc

wrapper.v

Verilog code that describes the FIR filter

You can open the files in a text editor such as Notepad.

Handel-C code that receives a bit stream, performs a volume change
on it if required and converts it to 8-bit data

top-level Verilog wrapper that connects the filter to the receiver

Dataln

Vol

—

LoGIC BLOCKS IN THE FIR FILTER EXAMPLE

The example also includes DK workspace and project files.

FIR filter example: interface code to Verilog

The Handel-C receiver is a component in a Verilog design. If your top-level code is
Verilog, you must use the port_in and port_out interface types to communicate with
the Verilog. The interfaces must have port names of the same name and type as the
Verilog signals in the wrapper connecting to the Handel-C component to be integrated.

reset
Verilog wrapper wrapper .y

Handel-C code Werilog filter code
receiver hoo filter »
[compiled to Yerilogs
EDIF]

Datalut g F_DataIn
Datalo FilterIn

Bdy bp——————————— — — — -+ By
“elra 1 Ackf#————————— — Ack Datalut

I

PeceiverClock FilterClock

The interfaces between receiver.hcc and the Verilog wrapper are:

interface port_in
(unsigned 1 Dataln)

Verilog

ReadData

O:

//interface type must be port_in or port_out
// single bit input port - name used in

// name of instance of port_in

/7/

no output ports

www.celoxica.com

Page 201

e

Diat alut

DK Design Suite user guide

Celoxica

interface port _out //interface type must be port_in or port_out
O // no input ports
WriteData // name of instance of port_out

(unsigned 8 DataOut = Bytes _out); //8 bit wide output port (name used
in Verilog)

interface port_out //interface type must be port_in or port_out
O // no input ports
WriteRdy // name of instance of port_out
(unsigned 1 Rdy = DataReady); //name of output signal and its value
interface port_in //interface type must be port_in or port_out
(unsigned 1 Ack) // single bit input port - name used in Verilog
ReadAck // name of instance of port_in
O: // no output ports
interface port_in //interface type must be port_in or
port_out
(unsigned 4 Vol) //4 bit wide input port (name used in
VHDL)
Volume // name of instance of port_in
O // no output

with {std_logic_vector = 1}; //standard logic ports

Ports declared by the interfaces

Port name Port direction

Dataln in
DataOut out
Rdy out
Ack in
Vol in

13.8 Example of interfacing to EDIF

An example is supplied of a project interfacing to a toplevel EDIF wrapper file which in
turn interfaces to another EDIF module. The example is installed in the subdirectory
DK\Examples\EDIF.

It consists of an EDIF code file for the circuit, an EDIF wrapper file that links the EDIF to
the Handel-C, and a Handel-C file that connects to the EDIF wrapper via port_in and
port_out interfaces.

You can only compile this example if you have the full version of DK.

~

www.celoxica.com Page 202

DK Design Suite user guide

Celoxica

13.8.1 FIR filter example files: EDIF

The FIR filter example (Instal IDir\DK\Examples\EDIF\Example3) consists of these
files:

filter.edf EDIF code that describes the FIR filter
wrapper .edf EDIF code that connects the EDIF filter to the Handel-C receiver
receiver.hcc Handel-C code that receives a bit stream, performs a volume change

on it if required and converts it to 8-bit data

You can open the files in a text editor such as Notepad.

reset

EDIF wrapper wrapper edf

v Y

batal Han[_iel-C code ECIF filter code
ataln receiver hoo fitter edf
RN . .
[compiled to EDIF)
HHE“ Dataln
g
Yol Datalut = Dataln
4
+"~ _ By o _ »{Ray
| val Bels o —— — Ack Datalut
clk clk \\

o &

Diat alut

ReceiwverClock FilterClack
LOGIC BLOCKS IN THE FIR FILTER EXAMPLE

FIR filter example: interface code to EDIF

The Handel-C receiver is a component in a EDIF design. If your top-level code is EDIF,
you must use the port_in and port_out interface types to communicate with the EDIF.
The interfaces must have port names of the same name and type as the EDIF signals in
the wrapper connecting to the Handel-C component to be integrated.

The interfaces between receiver.hcc and the EDIF wrapper are:

interface port_in //interface type must be port_in or port_out
(unsigned 1 rst) // single bit reset input port - name used in EDIF
ResetPort // name of instance of port_in
O; // no output ports

~

www.celoxica.com Page 203

DK Design Suite user guide

Celoxica

interface port_in // interface type must be port_in or port _out
(unsigned 1 clk) // single bit clock input port - name used in EDIF
ClockPort // name of instance of port_in
O; // no output ports
interface port_in //interface type must be port_in or port_out
(unsigned 1 Dataln) // single bit input port - name used in EDIF
ReadData // name of instance of port_in
O // no output ports
with {busformat = "B<N:0>"}; // specify an array bus format
interface port _out // interface type must be port_in or port _out
O // no input ports
WriteData // name of instance of port_out

(unsigned 8 DataOut = Bytes out) //8 bit wide output port (name used in
EDIF)
with {busformat = "B<N:0>"}; //specify an array bus format

interface port_out //interface type must be port_in or port_out

O // no input ports

WriteRdy // name of instance of port_out

(unsigned 1 Rdy = DataReady); //name of output signal and its value
interface port_in //interface type must be port_in or port_out

(unsigned 1 Ack) // single bit input port - name used in EDIF

ReadAck // name of instance of port_in

O; // no output ports

Ports declared by the interfaces

Port name Port direction

Dataln in
DataOut out
Rdy out
Ack in

www.celoxica.com Page 204

DK Design Suite user guide

Celoxica

14 Utilities

The DK package includes the following utilities.

bmp2raw converts BMP image files to a format suitable for input to the Handel-C
simulator.

raw2bmp generates BMP image files from a file generated by the Handel-C simulator.

They are located in Instal IDi r\DK\Examples\Handel-C\ExampleC\Data.

These utilities can handle both raw binary and text file formats. This is useful if a
conventional C program requires raw binary input and output whereas the simulator
requires text input and output.

The raw data format can be configured to have the colour bits in any order to allow
simulation of applications requiring non-standard bit patterns (e.g. 5-6-5 bit RGB
format).

Example

For an example of how to use these utilities, see the Edge detector example (see page
155).

14.1 bmp2raw utility

The bmp2raw utility converts BMP image files into raw binary or text format. The text
format is suitable for input into the Handel-C simulator. Files can be converted back to
BMP format using the raw2bmp utility.

The utilities are located in Instal IDir\DK\Examples\Handel-C\ExampleC\Data.

The general usage of the bmp2raw utility is:

bmp2raw [-b] BMPFile RAWFile RGBFile

where:

BMPFile is the source image file

RAWFile is the destination raw data file

RGBFile is a file describing the format of the pixels in the raw data file

Adding the —b flag as the first command line option causes the utility to generate a raw
binary file rather than a text file. To see the difference, consider a file containing the
numbers 0 to 3. The text version (no —b option) would look like this:

0x00
0x01
0x02
0x03

www.celoxica.com Page 205

DK Design Suite user guide

Celoxica

The binary version (created with —b option) would not be visible when loaded into an
editor. Instead, a hex dump of the file might look like this:

00000000 00 01 02 Q3 ** ** ** xk ks

The format of the raw data file can be controlled with the RGBFi le specified on the
command line. This tells the utility where to place each colour bit in the words in the raw
data file. Internally, the pixels in the BMP file are expanded to 8 bits for each of red,
green and blue.

The description file works by starting counting at bit 7 of the colour specified by the
identifier word and works down through the bits of that colour placing each bit in the
specified location in the destination word. The destination word will automatically be
created wide enough to contain the most significant bit specified (up to 32 bits wide in
total).

See the RGBFile worked example for an illustration of the following options:

e You need not specify 8 locations for each colour. The least significant bits of
each colour will be dropped if fewer than 8 locations are specified.

e You can specify multiple identifiers of the same colour. The bit counter will
continue to count down from the value reached for that colour each time you
specify the colour again.

14.1.1 RGB example file

There is an example file 8BPPdest.rgb provided with the bmp2raw utility to perform a
common conversion.

It can be used to extract the red component from source image and generate an 8-bit
per pixel raw image. This is useful for greyscale images.

8BPPdest.rgb

red

P NWh oo N

o

green
blue

www.celoxica.com Page 206

DK Design Suite user guide

Celoxica

14.1.2 bmp2raw RGBFile example

8BPPDest.rgb is an example file provided with the bmp2raw utility in

Instal IDir\DK\Examples\Handel-C\ExampleC\Data. It extracts the red component
from source images and generates an 8-bit per pixel raw image. This is useful for
greyscale images. You can examine the file by opening it in Notepad.

14.1.3 bmp2raw RGB description file format

Red

Location for bit 7 of red
Location for bit 6 of red
Location for bit 5 of red
Location for bit 4 of red
Location for bit 3 of red
Location for bit 2 of red
Location for bit 1 of red
Location for bit O of red

Green

Location for bit 7 of green
Location for bit 6 of green
Location for bit 5 of green
Location for bit 4 of green
Location for bit 3 of green
Location for bit 2 of green
Location for bit 1 of green
Location for bit O of green

Blue

Location for bit 7 of blue
Location for bit 6 of blue
Location for bit 5 of blue
Location for bit 4 of blue
Location for bit 3 of blue
Location for bit 2 of blue
Location for bit 1 of blue
Location for bit O of blue

14.2 raw2bmp utility

The raw2bmp utility is the reverse of the bmp2raw utility. It converts raw text or binary
files to BMP image files. The main use of the raw2bmp utility is to allow viewing of the
output from image processing applications with the standard Windows Paint utilities.

~

www.celoxica.com Page 207

DK Design Suite user guide

Celoxica

The raw2bmp utility is located in Instal IDi rADK\Examples\Handel-C\ExampleC\Data.

The general usage of the raw2bmp utility is as follows:

raw2bmp [-b] Width RAWFile BMPFile RGBFile

Width the width of the image. The height will be calculated from this parameter
and the source file length.

RAWFile source file containing raw data.

BMPFile destination image file.

RGBFile file describing the format of the pixels in the raw data file.

Adding the -b flag as the first command line option causes the utility to read a raw binary
file rather than a text file.

14.2.1 RGBFile worked example

In the RGBFile description file you need not specify 8 locations for each colour. The least
significant bits of each colour will be dropped if fewer than 8 locations are specified. In
the example below, the least significant 6 bits of red and blue and the least significant 4
bits of green are dropped.

To generate 8-bit pixels in the raw file with the following bit pattern:

Raw file bit Colour bit
number
(Most significant) 7 7 Red

7 Green
5 7 Blue
4 6 Blue
3 6 Green
2 6 Red
1 5 Green

(Least significant) 0 4 Green

use the following RGBFile:

www.celoxica.com Page 208

DK Design Suite user guide

Celoxica

Each pixel number and identifier (Red, Green or Blue) must appear on a separate line.

You may also specify multiple identifiers of the same colour. The bit counter will continue
to count down from the value reached for that colour each time you specify the colour
again. For example, the above file could also be written like this:

Red

7
Green
6
Blue
5

Red

2
Green
3

1
Blue
4
Green
0

14.2.2 raw2bmp RGBFile format

With the raw2bmp utility the format of the RGBFile describing where each bit is located in
the raw data word is similar to the file used by the bmp2raw utility. Indeed, for some
pixel formats (such as in the RGBFile worked example) a common file may be used.

As an example of where a different file may be required, consider the conversion of 8 bit
per pixel greyscale images to a BMP image. Here, each bit must be duplicated in the red,
green and blue components of the destination BMP file.

For example:

www.celoxica.com Page 209

DK Design Suite user guide

Celoxica

red

reen

OFRPNWPMIIONTORLRNWMNIITONQOFRLPNWDMOIEON

14.2.3 raw2bmp RGBFile example

8BPPsrc.rgb is an example file provided with the raw2bmp utility in

Instal IDir\DK\Examples\Handel-C\ExampleC\Data. It duplicates each bit of an 8-bit
per pixel raw file to red, green and blue components. You can examine the file by
opening it in Notepad.

www.celoxica.com Page 210

DK Design Suite user guide

Celoxica

15 Troubleshooting

My code is too large/too slow

Use the results of the logic estimator to pinpoint areas of your code using the most
resources.

Look at the application notes and other resources on the Celoxica Web site.

I don't understand the error messages

Look at the Error message (see page 213) and Warning message descriptions.

I need more information

Look at the Celoxica technical library at: http://www.celoxica.com/techlib/

15.1 Troubleshooting

Updating to DK3.1

There are weird timing constraints needed when I change to version 3.1

There are new specifications needed for the clock if there are channels connecting to
other clock domains. You can sort it out for most cases by defining a clock rate and
setting resolutiontime to 3/4 of the clock period.

15.1.1 Updating to DK 2

My plugins don't work any more

The names of the plugins supplied with DK to connect Handel-C simulations together
have changed. You need to update any references to these in your code. The files
affected are: DK1Connect.dll, DK1Share.dll, and DK1Sync.dll. These have been
renamed to DKConnect.dll, DKShare.dll, and DKSync.dll.

The previous simulator (netlist simulator) supported undocumented features, such as the
API functions HCPLUGIN_GET_VALUE_COUNT_FUNC and HCPLUGIN_GET_VALUE_FUNC. It also
supported the HCPLUGIN_VALUE data structure. These are not supported by the new
simulator.

Values can now be passed to and from Handel-C by calling parameterized C or C++
functions from Handel-C and Handel-C functions from C or C++.

DK library functions/macros don't work any more

DK libraries are now only supplied with the file extensions .hch (header) and .hcl
(library file). You may need to update references to them in your code.

www.celoxica.com Page 211

DK Design Suite user guide

Celoxica

The standard macro library (stdlib.hch) and fixed-point library (Fixed.hch) now form
part of the Platform Developer's Kit. If you have used macros from these libraries you will
need to update references to them on the Linker tab in Project Settings or the Directories
tab in Tool options.

My variables have weird values and they used to be fine

With previous versions of the compiler, some local non-static variables may have
defaulted to O.

You must now explicitly assign local non-static variables to zero (or some other value);
their default initial value is undefined.

15.2 Troubleshooting: multiple clock domains

How can I make place and route tools satisfy timing constraints
Consider
e Decreasing resolutiontime
OR
increasing minperiod if specified

(Note that unreliable hardware may ensue if these values are too close to
safety limits)

e Increasing paranoia (especially if resolutiontime is used). This will increase
latency.

e Decreasing rate (if possible)

Increasing unconstrainedperiod

15.3 Troubleshooting: FIFOs

My FIFOs do not run at the required clock frequency

You could

e read and write directly from/to a register

e use a block RAM rather than a LUT RAM or SelectRAM

e Choosing the size of the FIFO so it only uses one memory block
FIFOs seem to have erratic timing

FIFOs use a different implementation if they are an exact power of 2.

www.celoxica.com Page 212

DK Design Suite user guide

Celoxica

15.4 Error messages

Most error messages are relatively intuitive. Some of the less obvious ones will be due to
system problems, such as files being corrupted, unavailable or in the wrong format, or
the system not having enough disk space to write to a file.

Some of the error messages are listed below in alphabetical order with a brief
explanation.

The simulator also forwards errors from plugins that have been written using the Plugin
API.

Compiler and simulator error messages

"Arithmetic operations are not permitted on a "void" pointer"

You cannot perform arithmetic on a void pointer because the size of the object
being pointed to is not known. For example:

void *p;
++p; // not allowed

"Assignment loses "const” qualifier”

You cannot perform assignments that would potentially allow modification of
data qualified as const. For example:

{
const iInt 4 ci = 5;
const int 4 * ptr_ci;
int 4 * ptr_i;
ptr_ci = & ci;
ptr_i = ptr_ci; //banned assignment; if this were allowed...
* ptr_i = 3; //...then this would change the value of ci
}

"At least one pulse specified by "string® crosses Handel-
C clock cycle boundary"

You have specified a clock pulse length for the RAM clock which does not lie
inside a Handel-C clock cycle. Either the clkpulselen is too large, or you have
offset it too much.

"Attempt to access partial struct/union "string
Struct or union not fully defined. E.g.

struct S;

S X;

x.Bill; without the definition
struct S

{
int Bill;
};

www.celoxica.com Page 213

DK Design Suite user guide

Celoxica

"Bi-directional interfaces using the "string®" standard
not supported by current family"

There is a list of the 1/0 standards supported by different devices in the
Handel-C Language Reference.
"Call to recursive function "string”. (Not supported by Handel-C)"

Functions cannot be recursive in Handel-C. Use macro procedures or macro
expressions instead.

"Cannot achieve requested resolution time. Try decreasing it or increasing
paranoia."

Your constraint on resolutiontime is too tight. Increase paranoia to allow it
to be achieved in multiple clock cycles, or reduce resolutiontime

"Cannot compile object - not all information is known"
Could not infer a width or type etc. E.g. int undefined Xx;

"Cannot have a "shared expr® of this type"

You may only use integral types, pointers and aggregates as the return type
for a shared expr.

"Cannot initialize "ports®™ memory"

You cannot initialize a memory where the ports specification is non-zero. For
example:

ram raz[2] = {1, 2} with {ports = 1}; //illegal
"Cannot target EDIF - not all information is known"

Could not infer a width or type etc. E.g. int undefined Xx;
"Cannot target RTL level Verilog - not all information is known"

Could not infer a width or type etc. E.g. int undefined Xx;
"Cannot target RTL level VHDL - not all information is known™"

Could not infer a width or type etc. E.g. int undefined Xx;
"Cannot target simulator - not all information is known"

Could not infer a width or type etc. E.g. int undefined Xx;

"Cast loses "const” qualifier”

You cannot perform type conversions that would potentially allow modification
of data qualified as const. For example,

{
const iInt 4 ci = 5;
const int 4 * ptr_ci;
int 4 * ptr_i;
ptr_ci = & ci;
ptr_i = (int 4 *) ptr_ci; //banned cast; if this were allowed...
* ptr_i = 3; //...then this would change the value of ci
}

www.celoxica.com Page 214

DK Design Suite user guide

Celoxica

chanin® is only supported in simulation target"
chanin and chanout are used to create channels when simulating buses. (The
DK simulator cannot determine when input and output should occur when
simulating buses.)

chanout® is only supported in simulation target"

chanin and chanout are used to create channels when simulating buses. (The
DK simulator cannot determine when input and output should occur when
simulating buses.)

-cl® option specified without "-s" option”
The -cl option is used when targeting the simulator (-s) via the command line
compiler.

"Clock rate is required but has not been specified"

A clock rate is required for this clock domain.

const® or "volatile®™ qualifier cannot be used on a
channel . Move qualifier to underlying type?"
You cannot define a const channel. However, the channel could have a const

type.
const chan <int 8> x; //not allowed

chan <const int 8> x; //0K

const® or "volatile®™ qualifier cannot be used on a
signal. Move qualifier to underlying type?"

You cannot define a const signal. However, the signal could have a const

type.
const signal <int 8> x; //not allowed

signal <const int 8> x; //0K

"Could not check out licence for ... Please check installation of FlexLM."
Check the details of the floating licence file; you may not be licensed for
certain Handel-C HDL outputs. The location of the floating licence file is set by
the environment variable LM_LICENSE_FILE.

"Could not create temporary Ffile"

Your hard disk may be full, or there may already be a read-only file of the
same name.

"Could not determine which clock to use for ""string™".
An object requiring a clock was built but the compiler couldn't work out which
clock it should be connected to. Probably caused by an unused object (the
compiler finds clocks from an object's use and not its declaration).

"Could not expand "typeof™"
You are using typeof on an object of unknown type.

"Could not infer information about this object"

You may have declared a pointer of unknown width and not used it, declared a
variable of unknown width and then never used it in a context where the
compiler could infer the width.

www.celoxica.com Page 215

DK Design Suite user guide

Celoxica

"Could not infer width of enumerated type"
Probably due to defining an enum that is never used.

"Design contains an unbreakable combinational cycle"

The Handel-C compiler tries to break combinational code loops by inserting
delay statements. It is better to do this explicitly. For example,

while (x1=3)
{

delay;
by

"Error while compiling simulation output (“string®)"
The back end simulation compiler (e.g. VC++) failed to compile the simulation
output. (E.g. not enough disk space, could not find file, illegal option specified
in —cl, internal compiler error etc.).

"External tool not found (preprocessor or backend C compiler not in path)"
Error when the compiler cannot run the C preprocessor or the C compiler used
to compile the simulation .dll.

" "extern "C" " and "extern "C++" " not supported for EDIF, VHDL or

Verilog output"

You can only link to C or C++ code when building for Release or Debug.

"Evaluation of ... iIs not supported”
The expression evaluator in the Watch window cannot display expressions
containing function calls, let, select, trysema, strings, & or assert.
"Handel-C does not support side effects in expressions"
Expressions cannot take any clock cycles in Handel-C. For example, if
(a<b++) is not permitted because the ++ operator has the side effect of
assigning b+1 to b which requires one clock cycle.
"1llegal function declaration”
You may have missed the parentheses from your function declaration.

"Illegal "macro proc® expansion"
You have probably used a macro proc instead of a macro expr.

"Illegal ports for technology primitive "string
You have the wrong number of ports, or the ports are of the wrong width. For
example, you could have declared two output ports for an AND primitive.

"Illegal ports on standard bus type"

A built-in interface sort has been declared with the wrong number of input
and/or output ports. For instance, a bus_in may only have one input port, a
bus_out may only have one output port, a bus_ts may only have one input
port, one output port and one tristate condition, and so on.

"1llegal return type for a function."
You can only return integers, structs or arrays from a function.

~

www.celoxica.com Page 216

DK Design Suite user guide

Celoxica

"Illegal right hand side for "&" operator™
You have tried to find the address of something without an address (e.g., a
constant).

"1llegal type for off-chip memory"

You have attempted to store an architectural type or a structure in an off-chip
memory.

"1llegal use of identifier "string
Probably caused by using a typedef name as a variable.

"1llegal use of "releasesema()
Missing trysema() statement.

"Illegal value for "base” spec (defaulting to base 10)"
base specification not 2, 8, 10 or 16.

"Integer used as a pointer must be zero"
Probably caused by casting or comparing a constant to a pointer. You can only
do so with O (the null pointer) e.g. (int *)0;.

"Invalid input File"”
infile in wrong format.

"10 standard selection ("standard®™ spec) is not supported

for clock sources not assigned to dedicated clock

inputs ("clockport® spec)"
In some Xilinx devices, you can only specify 1/0 standards for clocks on
dedicated clock input pins. These pins are chosen by default by the DK
compiler, but you can disable this by setting the clockport specification to
zero.

macro expr” declarations have differing parameters"
Prototype and declaration vary in number of parameters.

macro proc declarations have differing parameters"
Prototype and declaration vary in number of parameters.
"Memory cannot be declared as both “offchip® and “ports®"

Caused by declaring memory as off-chip with the offchip specification and
declaring it as on-chip in foreign code using the ports specification.

"Memory forms do not match"
Caused by comparing two types of memory (e.g. one is ram int x[1] and the
other is rom int y[1])

"Minperiod and resolutiontime cannot be used at the same time."
Caused by using both minperiod and resolutiontime as specifications on
the clock. Use minperiod if you have set paranoia to O and resolutiontime
in all other cases (You may be able to use resolutiontime in all cases in later
versions of DK.)

"Object cannot be stored in ram/rom/wom memory"
You have attempted to store an architectural type in a memory.

~

www.celoxica.com Page 217

DK Design Suite user guide

Celoxica

"Pin "string” feeds multiple sequential blocks, which may
lead to unexpected behaviour. Consider using a clocked

interface"
You have an input which is not synchronized with the Handel-C clock which is
feeding multiple blocks. The values in the blocks may be different on the same
clock cycle. For example, if it is feeding two flip-flops, if the first flip-flop is
updated before the clock cycle and the second afterwards, both flip-flops can
be read after the first clock cycle but only one will have been updated. To
prevent this behaviour, use a clocked interface or bus.

"Pointer offset or array index must be integral™

Indices to arrays and offsets to pointers must be expressions of integral type.
They cannot be types, or non-integral expressions. For example:
struct MyStruct s;
int *p;
int i [4];
*(p + s); // not allowed
i [s]; 7/ not allowed

"Port "string” appears more than once in design

(port_in or port_out with no identifier?)"
You have two ports declared with the same name (or possibly without a
name).

"Port "string® appears more than once in external

component declaration”

You have two ports declared with the same name in the same interface.

""Rate must be specified if resolutiontime is.
You must specify a clock rate if you have specified a resolutiontime for a
given clock domain.

"Receive from channel in more than one clock domain"
Channels that connect between clock domains must be unidirectional.

"Send to channel in more than one clock domain"
Channels that connect between clock domains must be unidirectional.

shared expr® declarations have differing parameters"
Prototype and declaration vary in number of parameters.

"Simulator is not responding. Terminate simulation process?"
This message appears on a dialog if you use the Break or Stop Debugging
commands when stepping through C/C++ code in DK. Select Yes to stop the
simulation.

"Source code contains preprocessor statements"

There still appear to be pre-processor statements in your code after pre-
processing (maybe be caused by unrecognized #statement).

"Syntax error™
Syntax error in source code.

www.celoxica.com Page 218

DK Design Suite user guide

Celoxica

"Timing constraints specified using the "string® spec may not be zero"

You cannot have a bus_in interface with the intime specification set to zero,
or a bus_out interface with the outtime specification set to zero, as signals
cannot be passed in or out in zero time.

"Unknown specification identifier - "string
Unknown object specification identifier (with {spec_identifier = ...})

"Unsupported family: "string
Check whether your device is supported by DK. See the Summary of
supported devices in the Handel-C Language reference.

"Unterminated string constant™
Missing closing quotes.

"Un-supported synthesis tool: "string
Check the list of supported VHDL/Verilog synthesis tools in the DK User Guide.

"Variable "string” is used from more than one clock domain"
Data must be passed to different clock domains using a channel or an
interface. Variables cannot be shared between clock domains

"“"with®" cannot be used on a declaration”
Object specifications (e.g. with {busformat = "B[N:0]"}) can only be
applied to definitions of objects, not to declarations.

""with" on anonymous declaration is not permitted"

You have used 'with' on a declaration with no name e.g. struct s{} with
{show = 1}

15.4.1 DK environment error messages

"DK cannot continue with Find in Files."
Details:

File could not be opened or read.
"DK design suite could not insert the project file in to the workspace.™
Details:

File could not be opened or read.

"DK design suite could not load the browse-info database file
File could not be opened or read.

"DK design suite could not start the simulator.™
Details:
File could not be opened or read.

"None of the simulator DLLs have any clocks defined."
You have no main programs associated with clocks in your compiled code.

~

www.celoxica.com Page 219

DK Design Suite user guide

Celoxica

"The simulator "string”™ does not have any clocks defined."
You have built a function with no clock and attempted to simulate it. You
should have a clocked main function that interfaces to the unclocked function.
"The symbol "string® is not defined."
The cursor is not on a known symbol or a symbol has not been selected in the
file.
"There is no browse information for the project string."
You did not have Save browse info selected when you compiled the file.

15.5 Warning messages

Most warning messages are relatively intuitive. Some of the less obvious ones are listed
in alphabetical order with a brief explanation. Some of the error messages are also
described in the DK User Guide.

""base” not supported on aggregate members - ignoring"
You can only apply the base specification to the whole of a struct, interface
or mpram, not to the individual elements.

"Breaking combinational cycle (continue statement) - may alter timing"

The Handel-C compiler tries to break combinational code loops. It is better to
do this explicitly, e.g. by inserting a delay statement.

"Cannot open delay file. Timing estimation will revert to logic levels”
The logic estimator uses a file (DelayFile.hcd) for storing delays through
logic elements for different devices. This file may be corrupt or missing.

"Channel is never received from but has a sender."

A channel has been sent to but nothing reads from it.

"Channel is never sent to but has a receiver.”
A channel is read from but nothing has been sent to it.

"Current FPGA family not supported by technology mapper"

A list of the devices supported for technology mapping is given in the DK User
Guide.

"Data specs ignored for EDIF bus "string
If you use a data specification and a busformat specification, the data
specification will be ignored.

"Declaration of "string® shadows function parameter"

A local variable has the same name as a function parameter.

"Excessive value of paranoia specification. Values over two do not improve

reliability."”

The paranoia specification should only need to be set above 2 in unlikely
circumstances. It has been set to a value of 10 or over.

~

www.celoxica.com Page 220

DK Design Suite user guide

Celoxica

"Function "string” may be recursive"
Functions can not be recursive in Handel-C. Use macro procedures or macro
expressions instead.

"1llegal character in input (ignhored)"
Likely to be due to a non-ASCII character in an input file.

"10 standard selection ("standard® specification) not supported for HDL
output - ignored”

You can only use the standard specification (e.g. with {standard =
"HSTL_I111"}) for EDIF output.
"Netlist expansion "for area" not supported for current device family -
performing default expansion™
The -N+area option optimizes arithmetic hardware for size in Actel devices. It
is not supported for other devices. If you are using the GUI, and are targeting
EDIF output, check that the Expand Netlist for option on the Compiler tab in Project
Settings is set to Speed, not Area.
"Passing Handel-C type through "..." - cannot automatically check types"
If you are using extern "'C'" or extern "C++" and use an ellipsis in the
function declaration, DK cannot perform type checking. For example:
extern "C" int printf(const char *format, ...); // no type checking

"Possible direct or indirect type self-reference"

The type cannot be unambiguously inferred; it may be a circular type. For
example:

chan c;
c! &c;
could lead to the inference that c has a type which is a channel of type pointer
to itself.

"Properties specification on black box interface "string” is ignored”
You can only use the properties specification for VHDL or Verilog output if
you have set the bind specification to 1.

"Property specs ignored for VHDL"
You can only use the properties specification for EDIF output.

"Property specs ignored for Verilog"
You can only use the properties specification for EDIF output.

"Pulse position list for spec "string” is empty - memory will not be
clocked during %s cycles"

If you have used the rclkpos or wclkpos specifications with empty lists,
memory will not be clocked during the read clock or write clock cycles. For
example, memory will not be clocked during the write clock cycle if you use
the code below:

mpram

£
~

www.celoxica.com Page 221

DK Design Suite user guide

Celoxica

{1}, clkpulselen = 0.5};

rom int 1 ro[16] with {rclkpos
{}., clkpulselen = 0.5};

wom int 1 wo[16] with {wclkpos
IMyMpram;

"Retimer is only supported for EDIF targets"
You cannot use the retimer unless you are targeting EDIF

"Sharing pin "string" between tri-state buses - possible enable conflicts"
Do not enable both sources at the same time; this could lead to hardware
damage.

"Specify resolutiontime (Use minperiod if paranoia set to 0)"
You are using channels which cross clock domains but you have not specified
the synchronization timing (Try setting resolution time to 3/4 clock period.)

""string” specification not supported on interfaces using differential 10
standards - ignhored"
If you have used a specification which conflicts with the use of a differential

1/0 standard, it will be ignored. For example:
interface bus_in (unsigned 2 datain) 1() with {standard =

"LVDS25",
data = {"P1", "P2"}, {"P3", "P4"}, strength = 2} // strength spec

will be ignored

"This asynchronous channel must have a FIFO, pretending fifolength was set
to one.™
The channel crosses clock domains and both ends are either within a try reset
or within a prialt. It has been converted into a one-place FIFO.

"Timing constraint ("string” spec) not supported on ports by P+R for
current device family - ignored”
You cannot use intime on port_in interfaces, or outtime on port_out
interfaces for some device types.

"Timing constraint ("%s" spec) not supported on generic interface ports
by P+R for current device family - ignored”
You cannot use intime or outtime on generic interfaces for some device

types.
"*True® dual-port mode not supported by Stratix M512 blocks - setting block
type to AUTO™
You can only use dual-port RAMs with one ROM port and one WOM port in
M512 blocks. If you want to use an MPRAM with two RAMs, target the 4K or
MRAM instead.

www.celoxica.com Page 222

DK Design Suite user guide Ce’oflca
16 Index -
EDIF..ciiiiiiiei 139, 142, 143, 200
Edit menu ..o 30
Al 51, 74, 82 editorooiiiiii 19, 42, 102
A Examplel ..., 207, 212
ANSI-C ..o 53, 179, 181 EXAMPIEZ .o 208, 213
arrows.... 102, 107 Example3........ccooeeeiiiiit 209, 214, 216
. examplesb5, 106, 114, 115, 156, 157,
auto-indent ... 43 158, 160, 162, 164, 168, 181, 182, 183,
B 184, 206
DASE ... 43, 103 F
breakpoints............... 34, 108, 109, 110 FIFOs
Browse commands 35, 36, 41 troubleshooting 227
build process72, 74, 75, 76, 82, 85, 86, File VIeW ... 16, 17
180 FIlES 1+ v 10, 29, 51, 53
¢ Find commands..............cooooiiiian. 31
Clanguage.....cccovviiiiiiaiiiiiiaaaans 179 Find in Files command...........cccco..... 31
O 179 FIRfiltercoooveeeue... 209, 214, 216
circuit examples....... 207, 208, 212, 213 floating WindOWSccevuveneenenn.. 26
combinational circuit example .. 207, 212 folderscoooiiiiiiiiiiiie e 51, 54
commands 29, 30, 36, 37, 38, 44, 45 FONT . 43
compilation reports.......... 77,78,79, 81 Formattab.........cooooviiiiiiiiiiiiieens 43
compiler 74, 90, 93, 98, 99 full sCreen ..o 26
configurations.......... 10, 55, 56, 77, 104 fUNCLIONSovieeieeeeeeen 179, 181
connecting ...cvvveiiviiiiiiiieeanns 194, 200 H
constraintsc.cceeuennne. 70, 143, 145 Handel-C Verilog library 195
current directory ..., 52 Handel-C VHDL library 189
Customize Toolbars command........... 41 HandelC.voooviiiiiiiiiiieie 195
D HANAEIC.VAG ..o, 189
debug........ 20, 21, 43, 64, 97, 101, 104 hardware 76, 139, 146, 150
Debugtab......ccooviiiii 43 HDLs10, 77, 143, 146, 149, 151, 153,
definitionNSooueeeeeie e 35 189, 194
dependencies 16, 57, 58, 60, 72 '
directorieS......ooeiiiiiiiiiiiiiiias 44, 52 ICONS .« 17, 18, 19, 20, 21, 25
disabling breakpoints..................... 109 include path 44, 55, 65, 70
docking windows.........cccevvvviiiinnnn.... 26 integrating 188, 189, 194, 200
interfaces................ 190, 195, 196, 201
s
www.celoxica.com Page 223

DK Design Suite user guide

Celoxica

interfacing to foreign codel189, 190, 194, retiming.....ccovveiiiiiiiiiiinnaaan, 122, 123
195, 196, 200, 201 limitations 129
ISO-C.iiiiiie i 179, 181 ROC .o 188, 189, 195
L S
librariesccoooeiiiiiiiiiiiiann, 189, 195 search paths.........cccevveeeenn.. 55, 70, 73
location of files ...t 31, 52 selection Margin..........ccvweeeeeeeeeeen., 42
M (1] 0] Co To Y 188, 195
(0 = Tg = To 1 g o PR 51 simroc.vhd ... 188, 189
MaxPIus Tl ..ooooeeeiiiiii et 143 simulations................... 20, 83, 97, 101
menus..... 27, 29, 30, 36, 37, 38, 44, 45 simulator 83, 97, 101, 105, 106
multiple clocks splitting windows..............ccoviiennnn... 26

troubleshooting 227 stacks.10g..ccovviiiiii 43
O statements........ccoeeiiiiiiiiiinn 102
OPLIONS «.evvveeeeiiiieeeeee 42, 69, 90, 95 stepping through code 105, 107
P Symbol VieW.......oooiiiiiiiie 18
Paths.....coviii 52 SYMDOIS - 35
place and route tools 143 T
POITS e 189, 194, 200 TADS 43
project settings.................. 37, 62, 104 target ... 10, 93
projects........ 11, 37, 50, 51, 53, 56, 58 targeting hardware................. 194, 199
Q textdisplay «.coveeeiiiiiiiii 43
QUAILUS oo 143 threads ... 22,102
R timiNg....coovvviii e, 70, 143, 145

) Tool options dialogcc.ccceviinnnn... 42

receiver.hcc.................... 209, 214, 216 wolbars . 25, 26, 27
references... ... 35 Tools menu ... 40, 42
register bank circuit example ... 208, 213 tutorialsooovviiiiii 156, 206
regular expressionscccceeviinnnnn. 31 Vv
(€10 010)V/] o [o [33, 54, 109
replicated COdeoovomoveereeen.. 110 Verilog..covvieiiii i 194
report_html_format.xmi.............. 81, 82 VHDL. i 189
] 010 o £ R 77 w

generating 79 Window menu.................ll 44

troubleshooting viewing reports 82 WINAOWS. ... 26

viewing 81 WOIrKSPacesccoeevuiiiieiannnn.. 43, 55
FESEL oo 188 writing source code 189, 195, 201
reset on configuration...... 188, 189, 195

s

www.celoxica.com Page 224

DK Design Suite user guide

Celoxica

X
XIrOC.V oo 188, 195
Xilroc.vhd....cooviiiiiiiii 188, 189

www.celoxica.com Page 225

	Getting started with DK
	Starting DK
	Creating a new file
	Writing source code
	Build configuration types
	Project development sequence

	Windows and Toolbars
	Workspace window
	File view
	Symbol view

	Code editor window
	Code editor icons
	Context menu - code editor window
	Syntax colour codes

	Output window icons
	Debugger interface
	Debug buttons and icons
	Call Stack window
	Clocks/Threads window
	Variables window
	Watch window

	Toolbars
	Standard toolbar buttons
	Status bar

	Customizing the DK GUI
	Customizing windows
	Customizing toolbars
	Customizing menus

	Menus and commands
	File menu
	New dialog (File>New)

	Edit menu
	Find commands
	Finding using regular expressions
	Bookmarks
	Breakpoints dialog
	Using browse commands

	View menu
	Project menu
	Project settings

	Build menu
	Selecting a configuration

	Debug menu
	Tools menu
	Source browser
	Customize Toolbars... command
	Tools Options dialog

	Window menu
	Windows dialog

	Help menu
	Keyboard shortcuts

	Project development
	Project types
	Creating a project

	Managing project files
	What files are generated for a project?
	Adding files to a project
	Multi-file projects
	Linking multiple files
	Removing files or folders from a project
	Search paths for project files

	Workspace and project directories
	Adding an existing project to a workspace

	Configuring a project
	Defining project configurations
	Complex projects

	Project and file dependencies
	File dependencies
	Project dependencies
	External dependencies

	Properties dialog
	General tab
	Inputs tab
	Outputs tab
	Dependencies tab

	Project and file settings
	Independent settings for files
	General tab
	Debug tab
	Preprocessor tab
	Synthesis tab
	Optimizations tab
	Chip tab (Project settings)
	Linker tab
	Build commands tab (Project settings)
	Library tab

	Building a project
	Build process
	Running the compiler
	Setting up code for debug
	Building and compiling for debug
	Building with library and object files
	Preparing to build for hardware
	Compiling for release or target
	Report files

	Build commands in DK
	Simulator compilation command lines
	Generating a standalone executable
	Generating an .obj file
	Post-build commands

	Custom build commands
	Specifying a custom build
	Build commands, outputs and dependencies
	File and directory macros

	Command line compiler
	Summary of command line options
	Compiler target options
	Pass options to preprocessor
	Optimizer options
	Compiler debugging options
	Targeting the simulator
	Detecting simultaneous access to functions, memory and chann

	Simulation compilation control options
	Pass options to command line
	Pass options to backend compiler

	Environment variables

	Simulation and debugging
	Using the simulator
	Starting debug and simulation
	Debug symbols in the editor window
	Selecting a clock
	Selecting a thread to follow
	Following function calls in the Call Stack window
	Examining variables

	Using the debugger
	Generating debug information
	Debug project configuration
	Stepping through code
	Advancing through code
	Arrow behaviour during step and advance
	Using breakpoints

	Optimizing code
	Logic estimator
	Logic area and depth summary
	Area and delay estimation example
	Information on logic area
	Information on combinatorial paths and delay

	Optimizing code example
	Optimizing code example: original program
	Building the optimizing code example
	Optimizing code example: stage 1
	Optimizing code example: stage 2

	Targeting hardware
	Targeting a particular synthesis tool
	ALU mapping
	Technology mapping
	Retiming
	How retiming works

	Optimizing arithmetic hardware in Actel devices
	Targeting hardware via EDIF
	EDIF block and net names
	Specifying wire name format in EDIF
	Setting up place and route tools
	Preparing MaxPlus II to to compile Handel-C EDIF
	Preparing Quartus to compile Handel-C EDIF
	Importing timing constraint files into Actel Designer

	Targeting hardware via VHDL
	VHDL file structure
	Naming of VHDL files and entities
	Mapping Handel-C functions to VHDL entities

	Targeting hardware via Verilog
	Verilog file structure
	Naming of Verilog files and modules
	Mapping Handel-C functions to Verilog modules

	Tutorial examples
	Example 1: Accumulator example
	Compiling and simulating example 1

	Example 2: Pipelined multiplier example
	Example 2: Index array test code details
	Compiling and simulating example 2

	Example 3: Queue example
	Example 3: detailed explanation
	Compiling and simulating example 3

	Example 4: Clients / server example
	Example 4: code details
	Compiling and simulating example 4

	Example 5: Microprocessor example
	Example 5: microprocessor description
	Compiling and simulating example 5

	Example 6: clock manager example
	Example 6: description of program
	Compiling example 6

	Porting C to Handel-C
	Stages in porting C to Handel-C
	Deciding how the software maps to the hardware
	Converting the program from C to Handel-C
	Using the extra operators available in Handel-C
	Adding fine grain parallelism
	Adding hardware interfaces

	Porting C to Handel-C: Edge detector example
	The original program
	Stage 1: First pass conversion to Handel-C
	Stage 2: First optimizations of the Handel-C program
	Stage 3: Adding fine grain parallelism
	Stage 4: Further fine grain parallelism
	Stage 5: Adding hardware interfaces

	Integrating C/C++ files
	Calling C/C++ functions from Handel-C
	Compiling and linking in a C/C++ file
	Build commands to compile C/C++ files

	Calling Handel-C functions from C/C++
	Calling Handel-C functions from C/C++: example
	Calling Handel-C functions from C++: tutorial

	Using extern C: bitonic sort example
	Compiling and simulating the bitonic sort example

	Porting C++ to Handel-C: HDLC example
	Description of the HDLC example
	Compiling and simulating the HDLC example

	Integrating Handel-C with VHDL, Verilog and EDIF
	Reset on configuration
	Integrating with VHDL blocks
	Linking to the Handel-C VHDL library
	Writing Handel-C code to integrate with VHDL code
	Example: VHDL within a Handel-C project
	Example: Handel-C in a VHDL project
	Synthesizing Handel-C with external VHDL
	Connecting Handel-C EDIF to VHDL

	Integrating with Verilog blocks
	Linking to the Handel-C Verilog library
	Writing Handel-C code to integrate with Verilog code
	Example: Verilog in a Handel-C project
	Example: Handel-C in a Verilog project
	Synthesizing Handel-C with external Verilog
	Connecting Handel-C EDIF to Verilog

	Integrating with EDIF blocks
	Connecting Handel-C EDIF to external EDIF
	Writing Handel-C code to integrate with external EDIF
	Example: Handel-C in an EDIF project
	Example: EDIF component in a Handel-C project

	Examples: integrating Handel-C with VHDL, Verilog and EDIF
	Integration examples: running

	Examples of interfacing to VHDL
	Combinational circuit example: VHDL
	Register bank example: VHDL
	FIR filter example files: VHDL

	Examples of interfacing to Verilog
	Combinational circuit example: Verilog
	Register bank example: Verilog
	FIR filter example files: Verilog

	Example of interfacing to EDIF
	FIR filter example files: EDIF

	Utilities
	bmp2raw utility
	RGB example file
	bmp2raw RGBFile example
	bmp2raw RGB description file format

	raw2bmp utility
	RGBFile worked example
	raw2bmp RGBFile format
	raw2bmp RGBFile example

	Troubleshooting
	Troubleshooting
	Updating to DK 2

	Troubleshooting: multiple clock domains
	Troubleshooting: FIFOs
	Error messages
	DK environment error messages

	Warning messages

	Index

