Configware in the Computer Science Curriculum

Christopher Vickery
Queens College of CUNY
CE, CS, SE, IT, and IS

- Computing Curricula 2005: The Overview Report
 - Joint project of ACM, IEEE-CS, AIS
- Five Computing Disciplines Today:
 - Computer Engineering
 - Computer Science
 - Software Engineering
 - Information Technology
 - Information Systems
From CC2005 Final Report
Figure 2.1
From CC2005 Final Report
Figures 2.3 and 2.4
Traditional Co-Design

- Software (CS)

- Hardware (CE)
Software-Driven Design

System Design and Simulation

Application Software

Device Fabric
Goal: Introduce CS Students to Software-Driven System Design

- Build on existing software skills
- Develop capabilities working with:
 - Clocking
 - Real parallelism
 - Data types
 - I/O control
Laboratory Vehicle Choices

- Schematic capture and simulation
- FPGA-based prototyping boards
 - Large range of capabilities and costs
- FPGA vendor toolchains
 - Tradeoffs between power and complexity
- System Implementation Languages
 - Availability evolving
Computer Science at Queens College

CS240 Assembly language and logic design
 - CircuitMaker (Software simulation only.)

CS343 Computer Architecture
 - Altera UP[23] boards
 - Quartus BDF/Verilog

CS345 Hardware Laboratory
 - Celoxica RC200E boards
 - DK Integrated Development Environment
Hardware Laboratory

RC200E Features
- LEDs, Buttons, Seven-Segment Displays, Touchscreen, RAM, Audio, Video, Ethernet, …
- Cost of a laptop

DK Software Environment
- Handel-C (CSP, Occam heritage)
- Platform Abstraction Layer, with Simulation
- Waveform Analyzer
- Generates EDIF for vendor toolchain processing
DK Layers

- Platform Abstraction Layer
 - Library of Generic Devices (LED, Video ...)

- Platform Support Layer
 - Provides interface to PAL for specific boards

- Pin I/O
Handel-C

- Macros
 - GCC *cpp*
 - macro proc
 - macro expr

- Statement-level clocking

- *par* blocks
 - *Loop unrolling*
 - *Runtime parallelism*

- CSP for thread synchronization (? !)

- Weird syntax for I/O
Student Assignments

- Moving average pipeline
- Sequence:
 - Keyboard to Seven-Segment Displays
 - Draw seven-segment displays on screen
 - Build framebuffer
- Servomotor controller
- UART
Student Projects

What works?
- Implement textbook CPU
- Touchscreen video games
- Voice/Video over Ethernet

What doesn’t work?
- Algorithms tied to dynamic data streams (Ogg Vorbis)
Conclusions

- CS Students *can* do hardware design.
- Not all are interested in it.
- Those who are find it highly stimulating and rewarding.
- Still learning how to do it.